Towards Understanding Latent Factors and User Profiles by Enhancing Matrix Factorization with Tags

Donkers, T., Loepp, B., and Ziegler, J. (2016). Poster Proceedings of the 10th ACM Conference on Recommender Systems (RecSys 2016): Boston, USA, September 17, 2016, 1688.

Abstract

With the interactive recommending approach we have recently proposed, users are given more control over model-based Collaborative Filtering while the results are perceived as more transparent. Integrating the latent factors derived by Matrix Factorization with tags users provided for the items has, however, even more advantages. In this paper, we show how general understanding of the abstract factor space, and of user and item positions inside it, can benefit from the semantics introduced by considering additional information. Moreover, our approach allows us to explain the user’s (former latent) preference profile by means of tags.

Related focus areas

Resources

Related publications

Tag-Enhanced Collaborative Filtering for Increasing Transparency and Interactive Control

Donkers, T., Loepp, B., and Ziegler, J. (2016). Proceedings of the 24th Conference on User Modeling Adaptation and Personalization (UMAP ’16), 169–173. New York, NY, USA: ACM.

Merging Latent Factors and Tags to Increase Interactive Control of Recommendations

Donkers, T., Loepp, B., and Ziegler, J. (2015). Poster Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015).

On User Awareness in Model-Based Collaborative Filtering Systems

Loepp, B. and Ziegler, J. (2017). Proceedings of the 1st Workshop on Awareness Interfaces and Interactions.

VIEW MORE »