
Rule-Enhanced Task Models for Increased Expressiveness
and Compactness

Werner Gaulke

University of Duisburg-Essen

Duisburg, Germany

werner.gaulke@uni-due.de

Jürgen Ziegler

University of Duisburg-Essen

Duisburg, Germany

juergen.ziegler@uni-due.de

ABSTRACT

User centered design and development of interactive systems

utilizes theoretically well-grounded, yet practical ways to

capture user’s goals and intentions. Task models are an es-

tablished approach to break down a central objective into a

set of hierarchical organized tasks. While task models

achieve to provide a good overview of the overall system,

they often lack detail necessary to (semi-) automatically gen-

erate user interfaces. Based on requirements derived from a

comprehensive overview of existing task model extensions,

improvements and development methods, an approach that

integrates logical rules with task models is introduced. By

means of practical examples it is shown, that the integration

of rules enables advanced execution flows as well as leaner

task models thus improving their practical value.

Author Keywords

Model-Driven Development; User-Interfaces; Task-Model-

ing; Rules

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous;

INTRODUCTION
A structured representation of user goals and tasks is a key

activity in the process of user-centered engineering of inter-

active systems. Task models can serve both as tools for

analyzing the requirements for an interactive application and

as input to (semi-) automated user interface (UI) generation

techniques. For the latter, formal models are needed that con-

tain detailed and precise definitions of all aspects relevant to

the structural and temporal properties of an UI. The well-

known CAMELEON reference framework [5], for example,

relies on task models as the first step to capture requirements

that are subsequently transformed into abstract as well as

concrete interface representations.

A range of modeling approaches can be applied to represent

user tasks, offering different perspectives on a task and/or

different levels of detail and granularity [15]. A high-level

distinction can be made between process models which rep-

resent the control flow between tasks of approximately

similar level of abstraction, and hierarchical task models

which focus on the breakdown of tasks into a hierarchy of

subtasks. Hierarchical models have gained considerable pop-

ularity in the HCI field due to their ability to incrementally

transform high-level cognitive user goals into low-level ac-

tions at the interface (for an overview and comparison, see

e.g. [18]). They are, therefore, quite suitable for user-cen-

tered design processes which begin by analyzing user goals

and requirements independently from their technical imple-

mentation. By including temporal operators, hierarchical

task models can represent task flow at different levels, thus

providing specifications that are needed to transform a model

into an abstract or concrete UI. Concur Task Trees (CTT),

first defined in [25], are an example of this approach and can

be considered a de facto standard in current task modeling.

Process models such as Business Process Model and Nota-

tion (BPMN) [21], while often not considered as proper task

models, have their strengths in being able to show complete

task flows involving parallelism, and, in particular, condi-

tional branching which is typically less easy to represent in

hierarchical models. Both approaches, hierarchical as well as

process models, rely on graphical representations which are

illustrative and relatively easy to understand, providing a

good overview of the task structure shown. A major short-

coming of both, however, lies in the problem that tasks

involving alternative execution flows due to the complex de-

cision processes involved may considerably inflate the

model with additional subtasks or flows, or cannot be repre-

sented at all. As an example, consider a typical UI where

certain inputs are activated or deactivated, either based on

the user’s previous interaction or the state of some data item

in the domain model. Actually, modern UIs frequently make

use of the context-dependent activation or deactivation of

controls for increasing usability by guiding users through

their interaction task. Such processes, however, are typically

cumbersome to model, both in flat process models as well as

in hierarchical models. In the area of business process mod-

eling, methods based on Business Rules have been proposed

to capture the manifold conditions and case distinctions that

are commonly found in such scenarios. A prominent tech-

nique for this purpose is the Object Constraint Language

EICS'16, June 21 - 24, 2016, Brussels, Belgium

Copyright is held by the owner/author(s). Publication rights licensed to

ACM.
This is the author’s version of the work. It is posted here for your

personal use. Not for redistribution. The definitive Version of Record

was published in Proceedings of the 8th ACM SIGCHI Symposium on En-
gineering Interactive Computing Systems (EICS ’16, pp. 4–15). Brussels,

Belgium: ACM.

http://dx.doi.org/10.1145/2933242.2933243

http://dx.doi.org/10.1145/2933242.2933243

(OCL), used in the UML context [22]. A recent example of

the approach can be found in the Decision Model and Nota-

tion (DMN) [23], an extension of BPMN which captures

conditional choices using formal methods like decision ta-

bles. With this technique the authors aim at avoiding overly

complex process flows and at facilitating the reusability of

process definitions. While hierarchical task models such as

CTT have been extended to provide means for specifying

pre- and postconditions of tasks, the approach is rather lim-

ited and is, for example, not suited to enable general rule-

based modifications of task control flow.

In general, current task modeling techniques do not suffi-

ciently leverage the potential of rule-based techniques for

increasing expressiveness, for simplifying the models and for

facilitating the reusability of definitions for recurring situa-

tions across different task models. Furthermore, a systematic

and powerful linking with domain models is needed to allow

rules to check conditions based on data and to manipulate the

state of domain object. This aspect is also not sufficiently

covered by existing methods.

In this paper, we propose an approach that extends hierar-

chical task modelling based on the CTT notation by a generic

rule mechanism that can check a wide range of interaction

and data-related conditions as well as enable and disable

tasks in a flexible manner. Furthermore, an event mechanism

is introduced by which rules can react on events and raise

them, thus enabling communication across distant parts of a

task tree. The task model is closely linked with a domain

model which is represented in a semantic format as an ontol-

ogy to support cross-application use and the definition of

generally valid rules. We introduce the concept of rule-based

tasks that model entire subtask structures with complex exe-

cution flows in a single task entity, thus simplifying the

overall task model and supporting reusable task patterns.

In the following, we first provide a comprehensive overview

of existing extensions of CTT-based task models and review

the respective development environment, concluding with

requirements for modeling tasks in a way that enables the

generation of complex dialogs. Next, we introduce our rule-

enhanced task modeling technique which integrates CTT

task trees with the rule language Reaction RuleML. We also

provide an overview of our domain modeling approach. Fi-

nally, applications are demonstrated by means of practical

examples.

Related Work

Extensive research has been conducted in the area of task

modeling for extending the basic techniques such as CTT for

better manageability and increased uptake. This research can

be divided into three main directions: First, concepts have

been proposed that aim to improve expressiveness of the lan-

guage, reducing limitations and enabling a broader range use

cases. Second, reusability of task model concepts has been

addressed in order to reduce modeling effort and to achieve

more consistent task models. Third, user friendly develop-

ment environments and visualization tools were designed to

foster the practical adoption of the method. In the following,

we give a brief overview of these developments and high-

light limitations that still exist.

Task models – extending expressiveness

Although the original CTT model covers the basic temporal

structures of task execution well, certain situations such as

error handling cannot be solved with the original language

features. Several extensions have been proposed to solve

limitations by adding new language concepts or task types.

The authors of [31] propose new operators to enable ad-

vanced error handling in task models. If, for example, a task

cannot be completed due to an error, the extension allows to

define error handlers that in turn define alternative tasks that

will be invoked in such cases. The definition of errors and

error handlers allows to deal with models where the success-

ful completion of a task cannot be guaranteed. In addition to

error handling capabilities, a basic concept to enable com-

munication between instantiated task models is proposed.

Specific actions in a task model can be connected to another

task model thus influencing its tasks.

An advanced approach to support task models for collabora-

tive scenarios is elaborated in [35]. The Collaborative Task

Modeling Language (CTML) introduced there adds precon-

ditions to control execution by enabling or disabling tasks

based on defined requirements. In addition, events are used

to define dependencies between tasks that have no direct

connection, as well as to allow communication between mul-

tiple model instances. In [8] the authors use messages to

enable communication between distant tasks as well as task

conditions to restrict access based on user roles and rights. A

detailed discussion of the influence of preconditions in task

models is presented in [16]. It is shown that preconditions

can both be used in task models to refine interaction flows

and to clarify ambiguous parts. On the other hand, precondi-

tions are limited to the activation or deactivation of the tasks

they are attached to, they cannot perform changes in other

parts of the task tree and are usually limited to single predi-

cates. If task flow can be dependent on declarative conditions

as well as on trigger events sent by other tasks, a simple pre-

condition mechanism is not powerful enough to fully specify

task activation.

The addition of input and output ports to task elements is

elaborated in [13], aiming to support semi-automatic gener-

ation of user interfaces. Ports are used to explicitly define the

data elements necessary to start task execution as well as to

create output that can be consumed by following elements.

Explicit integration of objects and domain knowledge is also

addressed by the authors of the HAMSTERS approach [18].

Domain knowledge is, however, usually considered as appli-

cation-specific. Shareable domain models, e. g. expressed as

ontologies in Semantic Web formats, are not addressed in ex-

isting task modeling techniques. Yet this aspect is gaining

more relevance, for example, in e-commerce applications

where product ontologies may be exchanged between manu-

facturers, online-shops, or search engines.

All introduced concepts share the common goal to enable the

construction of more complete and sound task models. On

the downside, all additions lead to more complex models that

require more effort to create and maintain, hence additional

techniques to counteract this disadvantage are necessary.

Task models – patterns and reusability

In contrast to features that extend expressiveness by primar-

ily adding new language concepts, the elements discussed in

the following aim at improving the manageability of task

models. This can be achieved by several measures. First, re-

dundancies should be avoided to prevent the need to re-

create identical tasks. Second, a better overview can be

achieved if the modularization of task models is supported,

enabling to divide large models into multiple, clearly repre-

sentable parts. Third, concepts for abstracting fine grained

task structures should be available to reduce the overall num-

ber of elements and to achieve more compact models.

To avoid multiple definitions of identical tasks the concept

of references is introduced in [31]. Instead of defining iden-

tical elements multiple times a reference can be used to point

to an already existing task thus reducing the overall modeling

effort. Changes to the original task are applied automatically

to all references. For example, an Input Name task could be

referenced whenever the data is necessary. In addition, the

authors propose the decomposition of monolithic models

into smaller submodels that can be edited independently.

Providing reusability for single elements as well as entire

model fragments is deliberated in [19]. Whole parts of the

model are extracted as fragments. Variables are added as

placeholders to enable parameterization of the fragments in

other contexts. By comparing regular models with models

that utilize references and fragments, the authors demon-

strate that the latter models can reduce the number of

operators needed by about 20%. The extraction and use of

complete task patterns can ease model development signifi-

cantly [7]. Based on the Pattern Language Markup Language

(PLML) [30] demonstrates a concept to collect and apply

patterns for task models. Implementation and practical usage

of patterns for the USer Interface eXtended Markup Lan-

guage (UsiXML) is shown in [34]. Eventually, a combination

of all introduced approaches is demonstrated by [6]. Task ref-

erences (labelled sub-models), task fragments (sub-routines)

as well as a collection of task patterns led to a reduction of

about 41-46% in terms of necessary elements and operators,

resulting in smaller and easier to handle models.

While modularization and reusability of tasks and the use of

common task patterns leads to smaller task models there is

still a challenge as to how the patterns are specified effec-

tively and how they can capture complex interactive

behavior in a compact form.

Task models – development

To foster the adoption of modeling methodologies usable

tools are necessary which are tailored towards particular

needs of the prospected user group.

The CTT Environment (CTTE) [20] provides a workbench

to create CTT models. The hierarchic structure of task mod-

els is represented as a tree. Nodes are used to depict

composite tasks whereas leaves define concrete, potentially

executeable tasks that should not be further divided. Associ-

ations between task elements are typed with temporal

operators to specify possible execution orders, flows as well

as task dependencies. While providing a usable platform to

create simple as well as large task models, especially latter

ones are hard to create and maintain due to the necessary

screen size needed to visualize these models. Ways to im-

prove usability and facility of CTTE are introduced in [28].

Extensions range from simple changes, like abbreviated la-

bels or visually merged associations, to complex features like

a fish eye view that scales elements depending on the current

focus. Further extensions influenced by modern web devel-

opment techniques are shown in [1]. Visualization and

control elements adapt in accordance to available screen size.

In addition to the introduced extensions of [28] described

above, a text based representation is proposed that can be

used as an alternative to the tree visualization. Tasks are dis-

played as text elements in a list where indenting is used to

reflect the hierarchy and icons to depict temporal operators.

In a similar fashion, the tool TaskArchitect [32] complements

the common tree visualization with an additional tree-table.

Every task is represented as a row, whereas columns are used

to display and configure properties like difficulty or role.

An editor (AMBOSS) to create CTT models, extended spe-

cifically for security critical systems, is described in [8]. In

addition to basic CTT elements, modeling of domain objects,

roles, preconditions and messages are supported. Roles can

be used in preconditions, tasks can be connected with domain

concepts and messages are utilized to enable communication

between tasks without a direct connection. The tree visuali-

zation contains icons to depict concepts whereas additional

information is available in a detailed view. Although icons

provide sufficient information, they can be challenging to

learn and memorize for new users.

Alternatives to tree visualizations of CTT are proposed in [4]

and [14]. Former approach uses activity diagrams from the

Unified Modeling Language (UML) specification, whereas

in the latter case tasks are expressed using the Business Pro-

cess Modeling Language (BPMN) notion. Both cases have

in common, that an already existing and well defined process

modeling language is used in conjunction with a mapping

that defines the transition from process model to task model

and vice versa. Due to the different paradigms, transitions are

subject to loss of information as not every expression can be

mapped to a distinct counterpart. To solve this particular

problem, the approach described in [33] restructures the in-

terface generation process to be solely based on BPMN thus

avoiding a transition to a hierarchical task model completely.

The usage of an existing process modeling language in all

three variants is seen by the authors as an advantage regard-

ing the availability of already existing tools and trained users.

However, in practice and due to the different focus of process

languages, they can lead to even larger models or ambiguities

not translatable to a hierarchical task model.

REQUIREMENTS FOR ADVANCED TASK MODELING

Concluding from the analysis of related work concerning the

three aspects expressiveness, reusability and development

the following requirements should be considered for state of

the art task modeling.

Language constructs beyond basic structural and temporal

concepts:

• Events: As described in related work, the integration of

events enables communication between tasks that are

not directly connected. In addition, external services are

enabled that both consume or produce such events.

• Conditions: Conditions for different phases of task exe-

cution (e.g. pre-, post- and contextual) to enable flexible

conditional task flows. When defining conditions, do-

main model elements to be checked must be accessible

in a flexible manner (e. g. based on query techniques).

• Domain model integration: Methods to read and manip-

ulate (application independent) domain model

information should be provided.

Patterns and reusability:

• References: References provide a simple, yet practical

way to avoid multiple definitions of identical tasks

within a model.

• Variables and patterns: Utilizing variables, single tasks

or whole fragments can be reused. This facilitates the

collection of patterns to ease development of common

scenarios whilst enabling to focus on crucial parts.

Model development:

• Modularization: The option to split a single model into

multiple fragments improve maintainability and feasi-

bility. It should also be possible to modularize and adapt

models for different phases or user roles.

• Flexible tree layout and alternative view: Task trees

should both adapt dynamically to available screen real

estate as well as avoid visual clutter wherever possible.

In addition, an alternative view, based on tables or lists,

can further increase usability.

Current extensions either try to extent CTT in terms of ex-

pressiveness or try to simplify development by

modularization and reuse. However, especially modeling

challenges that require a high level of detail or depend on

conditional workflows can lead to large, thus difficult to

maintain CTT models. The subsequently suggested rule

based task aims to both improve expressiveness as well as

enable a leaner representations of expressed behaviors.

RULE-ENHANCED TASK MODELS: MOTIVATION AND
REQUIREMENTS

One of the strengths of modern graphical UIs is that they can

guide the user through interactions with complex dependen-

cies on prior inputs or the current state of the application.

This may be done, for example, by activating or deactivating

interaction objects, by expanding additional parts of a screen

form, or by changing the values that can be selected in a

widget. Such fine-grained and complex dependencies are

typically hard, if not impossible, to express with standard

CTT-like techniques. Especially when complex case distinc-

tions need to be considered, simple concepts like task

preconditions are insufficient to model the resulting pro-

cesses economically and precisely. Consider, for example,

two dropdown lists in a form from which the user can select

in order-independent fashion, but where the values selectable

in one list depend on the selection in the other. The only so-

lution in standard CTT would be to create one subtask for

each combination permitted which would inflate the model

considerably without providing additional insight in the

overall task flow. The general point is here that many inter-

action flows depend on the underlying logic of the

application. Aspects of what is usually called ‘business logic’

should therefore be expressible in the task model, if they in-

fluence the user’s interaction with the system.

For these reasons, we propose to extend tasks with a rule con-

cept that is powerful enough to cover different types of

business logic as well as event-based dependencies between

tasks. In respect to the forward modeling approach intended

by the CAMELEON framework, as demonstrated in [27],

rules are not designed to anticipate information of the ab-

stract or concrete interface, rather they provide means to

leverage their derivation. In detail, rule-enhanced task de-

scriptions can serve different purposes. First of all, rules can

be used to conditionally influence the execution of single

tasks as well as whole task flows. In addition, it should be

possible that rules create ‘virtual’ subtasks on the fly without

defining them in the hierarchical model first. Moreover, rules

can be used to improve soundness and utility of task models

by embedding decision models within the task model, cover-

ing all use case specific information in a single model. By

using rules to cover the definition of fine grained workflows

instead of modelling each step explicitly, the overall size of

models can be reduced, thus increasing transparency and fa-

cilitating the development of models. For example, a single

rule could be used to define order, datatypes and dependen-

cies of user inputs and replace several single tasks that would

otherwise be necessary. Finally, rule-based tasks might be re-

used in different applications or task models reducing

redundancy and effort in building the models.

In order to realize described goals, three main requirements

have to be met. First, a well-defined domain model is needed

to allow the formulation of conditions that check application

state and to manipulate state in a rule’s action part. Second,

a powerful rule language is necessary, providing a suitable

level of expressiveness to enable both the definition of logi-

cal expressions as well as the utilization of domain and task-

model knowledge. It should also be able to use events for

triggering actions. Third, the semantics of rule based tasks

have to be defined in order to specify its use in task models.

Running Example

The following example outlines a typical process of a cus-

tomer in an e-commerce (web-)frontend. Although tasks like

product browsing or search are rather simple, particularly the

customization of products, ranging from single selections to

multiple interconnected choices, can lead to negligible mod-

eling challenges.

Goal of the task model is to encompass a shopping scenario

for customizable fashion products. A domain model is used

that contains conceptual knowledge about garments as well

as instance data of sold products. First, the customer starts

by picking a category (product class) from a set of available

categories. Next, he has to choose the desired product from

a list of available products. To ease search, filters are pro-

vided. After selecting a product, a detail view enables further

product configuration. The properties color, size and logo

can be configured. Configuration is restricted by the follow-

ing constraints: A logo is only available if the selected size is

‘L (5)’ or larger. If the color ‘black’ is selected, no logo se-

lection is possible.

Figure 1 depicts a basic task model for the given scenario.

Buy Customized Product is modeled as the parent task, spe-

cialized in three subtasks. Initially, a product class like t-

shirts or sweaters has to be selected (Select Product Class).

Upon selection the transition enabling with info exchange is

used to activate the Choose From Product List task whilst

passing the selected class as parameter. This task is further

differentiated into the subtasks Filter Products and Select

Product. While former is used to provide filter mechanisms,

latter one is used to select the chosen product. Finally, after

a product is selected, the product instance is passed, enabling

the task Configure Product. Although the model already pro-

vides a sufficient overview additional details are required if

it shall be used for (semi-)automatic interface generation.

Figure 1. Comprehensive task model for the described sce-

nario. First, a product class is selected to enable product

selection. Second, a product is chosen to activate product con-

figuration. Notation derived from CTT Environment [20].

According to the described scenario, Configure Product is

restricted by certain conditions. Using basic CTT, several

subtasks could be added to reflect configuration of individual

product properties. In this case Select Color, Select Size and

Select Logo are added as individual tasks (figure 2). In addi-

tion, choice options could be added as additional subtasks,

thus providing more detail. However, described restrictions

like the option to enable or disable logo selection based on

certain color or sizes would result in a not reasonable effort

in comparison to the rather simple complexity. Moreover, ad-

vanced constraints could not be expressed with basic CTT

concepts thus making an additional concept, like the pro-

posed rule type, necessary.

Figure 2. Task model extended with configuration options for

color, size and logo. Addition of all possible combinations

would lead to an unfeasible, hard to maintain model.

Domain model

Task models and domain models represent two complemen-

tary perspectives on an interactive application and must be

connected if the models are to be transformed into an abstract

or concrete UI, in particular if automated generation is in-

tended [18]. Domain model data serve as input and output of

tasks but also for testing conditions that activate tasks. For

generating systems, domain models need to contain not only

conceptual entities but also the instance data to be processed.

There are several ways to realize domain models that can be

differentiated regarding the underlying model paradigm and

the level of expressiveness. For instance, relational models

can be used to define entities and their relationships. Alt-

hough already providing sufficient information for a wide

range of use cases, advanced concepts like inheritance or

custom datatypes with fixed value ranges are missing, thus

making more expressive formats necessary.

Semantic formats like the resource description framework

(RDF) [17] or the ontology web language (OWL) [9], rely

on a graph-based data model that offer a high level of flexi-

bility and expressiveness. They provide capabilities to create

platform independent domain models which is increasingly

a requirement if a model is to be shared among different

stakeholders or applications, as is the case, for instance for

product models in e-commerce. Semantic models provide

constructs for, amongst other things, custom data types,

structured relationships and inheritance. In addition, rules to

define generalized domain level constraints are supported ei-

ther by adding restrictions for relationships or datatypes or

by using an extension like the semantic web rule language

(SWRL) [11], or Reaction RuleML which we introduce in

the next section. However, to avoid possible duplication of

domain knowledge, rules embedded in task models should

be clearly separated from rules in the domain model. Rules

in the domain model should be universally valid, whereas

Buy Customized
Product

Select Product
Class

Filter Products Select Product

[]>>
Product

Class

[]>>

Choose From
Product List

Configure Product
[]>>

Product
Instance

Buy Customized
Product

Select Product
Class

Filter Products Select Product

[]>>
Product

Class

[]>>

Choose From
Product List

Configure Product
[]>>

Product
Instance

Select Color Select Size Select Logo|=| |=|

rules ins task models should only be used to add use case

specific knowledge relevant for interactive behavior. For in-

stance, if the domain model contains a user concept and

every user has to supply a password with at least eight char-

acters, this should be added as a constraint within the domain

model. In contrast, a restriction to allow registration only for

certain email addresses is most likely application specific

and therefore a candidate for a task model rule.

To make use of domain model concepts in task model ele-

ments as well as rules, mechanisms to establish a connection

are necessary. A connection can be achieved either by creat-

ing a static link or with a query mechanism that provides

loose coupling and a higher flexibility. Advantages of latter

approach are discussed in [12], where database queries are

used to connect elements of discourse models with domain

model elements. In regard to semantic domain models, spe-

cialized query languages like SPARQL [10] are available to

create a connection.

To conclude, a well-defined domain model is necessary to

enable rules that make use of defined concept by utilizing a

suitable query language. Rules itself should be used to ex-

press application specific requirements that extend available

domain model knowledge.

Rule language

A rule language used to define constrains for task models has

to meet several requirements. First of all, a generic rule struc-

ture, that is capable to support the definition of different

specific rule types, is necessary. In addition, an expressive

rule language is required to build logical equations in accord-

ance to the introduced generic structure.

The RuleML project aims to provide an overarching specifi-

cation of web rules by standardizing commonly used rule

concepts [2]. To enable cross platform use, rules can be seri-

alized using the Rule Interchange Format (RIF) [29].

RuleML pursues an extensible approach and is divided into

multiple modules. Within this context, the module Reaction

RuleML [24] serves as a suitable archetype to derive the con-

cept of rules for task models due to its particular focus on

rule based event processing. As shown in figure 3, a rule is

separated into two essential parts: Initially a premise is de-

fined, stating facts that either evaluate to true or false. A

consequence is provided to define changes or actions to be

executed if given premise evaluates as true. In Reaction

RuleML both basic parts are further differentiated to enable

a wide range of use cases. On the one hand, premises are di-

vided into events (on) and conditions (if). Events are used to

specify triggers that invoke evaluation when they occur

within the model whereas optional conditions can be used to

provide further restrictions that have to be evaluated before

subsequent processing. On the other hand, consequences are

divided into conclusions that can derive knowledge (then) or

invoke actions (do).

Figure 3. Basic building blocks of Reaction RuleML. Premises

are build using events or conditions whereas consequences

lead to conclusions and actions.

Building blocks of Reaction RuleML can be combined to

create different rule types, each geared towards a specific use

case. Table 1 lists valid variations and explains each rule type

briefly. Beyond introduced elements, the specification pro-

vides additional constructs like scopes or logical alternatives

(else) to enable definition of advanced rules. In the scope of

this paper presented basic elements are sufficient for further

discussion and demonstration.

Combination Name / Purpose

[if]  [then]

Derivation rule: Tests existing

knowledge to gather new insights.

[if]  [do] Production rule: Tests existing

knowledge and executes actions if

conditions evaluated as true.

[on]  [do] Trigger rule: Is invoked on occur-

rence of a certain element and does

execute an action.

[on][if]  [do] Event Condition Action (ECA) rule:

Invoked on occurrence of a certain

event with an additional condition to

determine execution of an action.

Table 1. Typical rule types made from of Reaction RuleML

building blocks.

To finally make use of described rule types, it is on the one

hand necessary to provide ways to use domain and task

model knowledge as well as state information in premises.

On the other hand, means to express consequences are nec-

essary (see figure 4). Such operations are enabled by n-ary

predicates. For instance, Equals(x,y) is a commonly used

predicate to compare two variables for equality, resulting ei-

ther in true or false. Thus, to make use of available

information, predicates specifically designed for task model

and domain models need to be defined.

Figure 4. Generic structure of rules for task models. Premises

are checked against domain model or the current state,

whereas consequences are applied to the task model.

If
(condition)

Then
(conclusion) On

(event)

Do
(action)

Premise Consequence

If
(condition)

Then
(conclusion) On

(event)

Do
(action)

Premise Consequence

Task model
events

State & domain
knowledge

State & domain
knowledge

Ga rm en t

Bl ouseList Pr oduct s Fil t er Pr oducts

Select
Pr oduct

task model &
task model events

List Pr oduct s Fil t er Pr oducts

Select
Pr oduct

+
<e>

<e>

List
Pr oduct s

Fil t er
Pr oduct s

Select
Pr odu

ct

Ga rm en t

+
Bl ouse

Basic predicates

Comparisons, set operations or logical expressions are essen-

tial building blocks to create rules. Therefore, predicates to

enable these operations have to be provided. Typical con-

cepts like Equals(x,y), Greater(x,y) or Less(x,y) are used to

enable comparisons and support common datatypes. Testing,

whether an element belongs to a set or not, is provided by set

operations like Contains (x,y). Finally, logical expressions to

connect (and, or) or negate (not) atomic parts are essential to

compose advanced rules. Given examples are non-exhaus-

tive and used to give a general impression about basic

predicates.

Event predicates

ECA or trigger rules use events as enabler to invoke their ex-

ecution. Therefore, the following predicates are used to

create listeners for automatically or manually raised events

within the task model. Automatically raised events occur

during execution of the task model. Every action or change,

like the activation of a task caused by user interaction, is

made available as an event and can be used as a trigger. On

the contrary, manual events are raised explicitly by action

predicates used in rule consequences. To conclude, the event

predicates defined below provide flexible means to react on

activities within the task model. Concepts like pre- and post-

conditions or error handling are covered by this approach and

benefit from the higher expressiveness of rule terms.

Predicate Description

OnTaskStart(tx)

OnTaskFinish(tx)

OnTaskInterrupt(tx)

OnTaskResume(tx)

Listener for state changes of

specified task tx. If tx is omit-

ted, the trigger is bound to the

task it was defined in.

BeforeTaskStart(tx)

BeforeTaskFinish(tx)

Listener for state changes spe-

cifically to recreate pre- and

postconditions.

OnInput(dx) Listens for inputs for element

dx from the domain model

made within a task.

OnEvent(ex) Generic event listener that reg-

isters for a specified event ex

OnError(ex) Listener for errors raised during

the execution of tasks.

Table 2. List of predicates to register for events occurring

within task models. Events are either raised explicitly by ac-

tion predicates or automatically by task model state changes.

Condition predicates

Conditions can make use of available information contained

both in the task model as well as in domain model. In the

former case, state information about the task model is of par-

ticular interest. As demonstrated in [3], task models can be

transformed to state charts that enable to query state infor-

mation. Therefore, predicates are necessary to get hold of

such state information. In the latter case, a predicate to test

or get hold of additional domain model concepts is needed.

Predicate Description

TaskStarted(tx)

TaskActive(tx)

TaskFinished(tx)

TaskCancelled(tx)

To determine the current task

state. Tests, if task tx (identified

by unique name or id) is cur-

rently in respective state (started,

active, finished, cancelled).

QueryConcept(qx) Executes a query against the do-

main model and makes the result

available.

Table 4. Predicates to create conditions. Used to get infor-

mation from the task model and domain model.

Conclusion predicates

Derivation of new knowledge is the purpose of conclusion

predicates. In this particular case, new domain or task model

knowledge could be deduced. Imagine a task model that con-

tains many concurrent and optional tasks that reflect

extensive activities found, for example, in the area of enter-

prise resource planning. State information about finished or

unfinished tasks could be used to derive a user role which in

turn could trigger certain rights or features. Although provid-

ing a powerful mechanism, conclusion predicates and

knowledge derivation are out of scope for this paper.

Action predicates

Enabling reactive behavior is the purpose of action predi-

cates. In detail, either existing information is altered or new

information is added. For example, in the former case an ex-

isting task could be activated or deactivated whereas in the

latter case a new task, initially not existent within the model,

could be added. Tasks that are created by such an action are

called virtual tasks. They are particularly useful if, for exam-

ple, a lot of simple tasks for data entry or manipulation need

to be created. By creating virtual tasks procedurally, fine

grained workflows can be realized without the need to define

all concrete tasks and possible branches manually thus re-

ducing visual clutter.

In addition to manipulation and creation of task elements, ac-

tion predicates are provided to raise events or errors. Both

can be utilized by using the previously introduced OnEvent

or OnError predicates. Possible event types should be col-

lected centrally in order to ease the definition of rules using

respective events as triggers.

Predicate Function

EnableTask(tx)

DisableTask(tx)

Enables/Disables an existing task

tx and makes it available/unavaila-

ble for execution. Does not

transition to that task, just enables

it for subsequent processing. Most

likely to be used for sub tasks

within the current hierarchy.

UpdateTask(tx, px) Updates property px of task tx.

Used to update available task prop-

erties like min/max executions.

CreateInput(dx,tx)

RemoveIn-

put(dx,tx)

Creates a new or removes an exist-

ing virtual task with the purpose to

enable input of new information.

Parameter dx specifies a plain

datatype or references a concept of

the domain model. Parameter tx is

used to define the task where the

new virtual task is added. If omit-

ted, the current task is used.

DisableInput(dx,tx) A nondestructive alternative to re-

move input. The Input task is

disabled but could still be visible

in the interface in order to give a

hint of possible options.

AddValue(id,v)

UpdateValue(id,v)

DeleteValue(id,v)

Used to add/update/delete a speci-

fied value v in the current

execution state, identified by an id.

Acts like a key-value store and is

suitable for rather simple items

like a role name.

AddInstance(tx,v)

UpdateIn-

stance(tx,v)

DeleteInstance(tx,v)

Adds/update/deletes a value v of

the given type tx from the refer-

enced domain model. Used to

update values that may be picked

in a selection.

RaiseEvent(tx)

RaiseError(tx)

Creates an event / error event with

a type tx as a parameter. Types

should be defined centrally to ena-

ble trigger rules for such events.

Table 3. Action predicates to update task state information

and domain concepts, add/remove virtual tasks or raise events

and errors that can be utilized as triggers by other rules.

To conclude, introduced predicates provide a collection of

functionalities to be used to both define rule conditions and

consequences. Practical examples were used to derive and

refine proposed predicated. Proposed predicates are the re-

sult of made experiences of their application and discussion

in real world scenarios. If, however, additional requirements

arise due to the specifics of a given scenario, extensions can

be added easily. Present predicates are designed to extend ex-

pressiveness and foster simplification of common use-cases

whilst integrating seamlessly with existing task model con-

cepts. Finally, the next section conceptualizes a frame to put

rules and predicates to use.

Rule based task

To finally make use of the introduced rule concept it is nec-

essary to extend the existing CTT meta model to provide

means that enable to add rule definitions. Basic CTT differ-

entiates two main concepts: on the one hand, abstract (also

composite) tasks are composed out of an arbitrary number of

subtasks whereas on the other hand concrete (also atomic)

tasks mark single executeable units. Specified in a formal

meta model (e.g. [26]), abstract and concrete tasks usually

derive common properties from a task superclass. Further-

more, concrete tasks are specialized into user-, interaction-,

and system tasks. Rule definitions should be possible for

both types in order to indicate their area of influence on the

overall model. For example, rules for abstract tasks could be

used to process events raised by associated children, whereas

rules for concrete tasks are more likely to define conditions

or actions that are relevant during its execution.

In order to enable the definition for both abstract and con-

crete tasks, the task superclass is extended with two

additional associations as shown in figure 5. Firstly, the class

DomainObjectReference is used to reference domain model

concepts that are going to be used in rule definitions. Sec-

ondly, rules are added within the RuleDefinition class. This

separation of concerns was chosen to avoid a mixture of

query and rule terms aiming at a better readability. However,

an implementation may decide to merge both if the used

query language can seamlessly be embedded into rule defi-

nitions without making them too complex.

Figure 5. The rule based task element serves as a frame to in-

tegrate rules. It inherits all common task properties and

contains defined rules.

The application of the extended meta model is done in two

phases. Existing domain objects that are going to be used in

rule definitions have to be collected initially. Technically this

is done by specifying queries that select concepts from the

domain model, making them available as variables. If, as pre-

viously advocated, semantic domain models are used, a

semantic query language like SPARQL would be utilized. In

case no domain object is used, this part may be omitted. Fi-

nally, rule terms are added that abide to the specified rule

scheme and make use of the previously introduced predicates

as well as allocated variables resulting from executed que-

ries. To summarize, the following information has to be

supplied:

1. Domain Objects: Reference / query to domain ob-

jects to be used in rule definitions. Query results are

available as variables in rule definitions.

2. Rules: Definition of rules by using available varia-

bles as well predicates according to the previously

define rule scheme.

Application of rule based task element

Figure 6 demonstrates the application of the rule based task

for the initially introduced running example. Even though

Concrete
(User, System,

Interaction)

Abstract

RuleDefinition

DomainObject
ReferenceTask

original CTT was able to provide a basic solution, constraints

between product properties could not be expressed properly.

Proposed rules and predicates will be used to model de-

manded constraints.

Figure 6. Rule element to configure products.  domain con-

cepts to be used in rule definitions are selected.  enables

input for all selected concepts.  checks the entered sized and

disables logo input if the size is less than 5.  checks the se-

lected color and disables logo input if the color was black.

Initially, before any rules can be defined, the domain proper-

ties size, color and logo are selected in order to make them

available as variables (). For the matter of simplicity, se-

lection of these properties is done using a rudimentary query-

pseudocode. Selected variables are used subsequently within

the definition of rule terms. As mentioned above, it is neces-

sary that respective properties are specified in a well-defined

data structure and results are either an object type or a prim-

itive like a string. Only if this is the case, basic predicates can

be used to define tests like comparisons.

The first rule () is defined as a trigger rule ([on][do])

with the OnTaskStart predicate used to bind to the activation

of the current rule by using the this keyword as a parameter.

In the action part of this initial rule the CreateInput predicate

is used to create virtual tasks to request input for color, size

and logo. The next two rules are used to define constraints

between user selections and available options. In the first in-

stance (), a rule to disable input for logo is created if the

selected size is less than medium (5). OnInput is used to trig-

ger execution of this rule that occurs whenever data is

entered. The above described condition, regarding the se-

lected size, is expressed using the Less predicate. If the term

evaluates true, input for logo is disabled by the DisableInput

predicate. In the second instance (), a rule is defined to dis-

able logo input if the color is black. Similar to previous rule,

an event listener for the respective datatype is added as well

as a condition (Equals) to test the value of color. In case the

condition evaluates true, DisableInput is used as well to de-

activate input for logo.

Integration and execution

The created rule based task can now be integrated in the task

model. The abstract task Configure Product with three con-

crete subtasks from figure 2 is replaced with the new rule

based task element. As depicted in figure 8a), on initial exe-

cution rule  is activated, creating three virtual tasks that

enable input for color, size and logo. Selecting a color would

trigger rule . And, as shown in 8b), if the chosen color

equals black, the selection for logo is disabled.

Figure 7. The rule element replaces manual created subtasks.

a) On initial activation three virtual subtasks (select color,

select size, select logo) are generated. b) If a color is selected

the last rule is triggered. If the color was “black” the

conclusion is applied and the logo selection would be disabled.

The given example provides no means to reactivate the se-

lection once they are deactivated although this could easily

be solved by adding an alternative (else) to the clause. In gen-

eral, the modeler is responsible to avoid conflicts or

deadlocks though this also concerns other CTT extensions

and could be solved by model-checking techniques [31].

To conclude, within this section a rule based task was moti-

vated, specified and demonstrated with an initial basic

example, yet to fully embrace possible applications and ben-

efits, additional examples are given in the next section.

USE CASE SCENARIOS

Following examples briefly show the use of rule based tasks

in diverging scenarios to demonstrate their benefits.

Compact task models

Rule based tasks can be used to create compact task models

by replacing concrete tasks with virtual tasks created by the

CreateInput predicate. Especially tree visualizations, used

commonly by task model editors, benefit in terms of clarity.

Figure 8. The example of [26] is significantly reduced in size

by using virtual task, thus allowing to focus on critical parts.

Configure Product

select color, size, logo
from Product p

OnInput(size) and Less(size, 5) 
DisableInput(logo)

Domain objects

Rules

OnInput(color) and Equals(color,
 black  DisableInput(logo)

0

1

2

3

OnTaskStart(this) 
CreateInput(color) and
CreateInput(size) and
CreateInput(logo)

[]>>
Product
Instance

Configure Product

select color, size, logo
from Product p

OnInput(size) and Less(size, 5)
 DisableInput(logo)

Domain objects

Rules

OnInput(color) and Equals(color,
 black  DisableInput(logo)

OnTaskStart(this) 
CreateInput(color) and
CreateInput(size) and
CreateInput(logo)

||| |||
Select
Color

Select
Size

Select
Logo

a) Initial activation

Configure Product

select color, size, logo
from Product p

OnInput(size) and Less(size, 5)
 DisableInput(logo)

Domain objects

Rules

OnInput(color) and Equals(color,
 black  DisableInput(logo)

OnTaskStart(this) 
CreateInput(color) and
CreateInput(size) and
CreateInput(logo)

|[]| |[]|
Select
Color

Select
Size

Select
Logo

b) Conditional deactivation

|[]||[]|

Active rule and rule consequence

|||

Enter Info [>

Enter Car Info
(rule based)

1 2 n

Enter User Info
(rule based)

1 2 n

Make Car
Reservation

Submit Request

Use-case dependent constraints

Domain models are typically aimed towards reuse and use-

case overarching application. However, in order to comply

with given requirements, it is often necessary to adapt minor

details. Rules can be used to add such details without chang-

ing the domain model.

Figure 9. Simple use case specific rule that disallows email ad-

dresses from the test.org domain.

Constraint based behavior

Rule based tasks enable to express complex constraint based

behaviors to enable use cases that cannot be expressed using

original task model concepts.

Figure 10. Task model for a programming course. The lecture

is divided in two parts. Only if the first part is finished, the

Create Prototype task should be activated.

Events to collect information

The integrated event mechanism allows rules to both raise as

well as consume events. This can be used to create a central

task that is notified by other tasks whenever they are com-

pleted successfully in order to count and conditionally

activate a task or subtree.

Figure 11. Events are raised if a question was solved success-

fully. Only if a certain number of correct answers is counted,

the final question is activated.

Reuse by rule parametrization

As demonstrated in [19], placeholders can be utilized to en-

able reuse and parametrization of single tasks and whole

subtrees. Applied to rules, parametrization can be used to

prepare rules for reuse across different task models. For ex-

ample, as indicated in figure 12, a generic Process Payment

task tree is defined which, due to its parameter, can be in-

serted whenever payment needs to be handled.

Figure 12. Simplified example of a reusable task tree for

payment processing. The payment type is added as a

placeholder. Embedded into another context, the placeholder

would be replaced with the actual payment method.

CONCLUSIONS AND FUTURE WORK

We have proposed a method for extending hierarchical CTT-

based task models with a powerful rule language that pro-

vides more capabilities than existing pre-/post-condition

definitions. In particular, event-based control flow can be

seamlessly integrated with conditional task activation, and

the temporal operators provided by CTT. We introduce task-

based rules that encapsulate complex interactive behavior in

their rule descriptions thus removing the need to model each

possible subtask (structure) explicitly. The creation of virtual

tasks through rules can greatly reduce the complexity of the

visual model, especially if complex dependencies control the

activation of interaction tasks. The rule language makes it

possible to embed those parts of the business logic in the task

model that determines task flow. By using graph-based do-

main models in semantic format, application-independent

models can be coupled with different task models. Generally

valid rule-based knowledge can be represented at this level,

allowing to separate knowledge depending on its applica-

tion-specificity. The loose coupling via query-based domain

model access allows for flexible querying and manipulation

of domain entities and for abstracting tasks by parameteriz-

ing them with domain concepts.

By providing means to write more compact task models, the

technique also supports the need to provide modelers with a

good overview even of complex models. Developers can use

the graphical tree model to observe the overall, essential task

flow while hiding detailed flows in the rule section of tasks.

At the same time, the language seems powerful enough to

precisely define all control flow aspects that are needed to

automatically generate UIs. Currently, we work on imple-

menting an editor for the method. To address usability

concerns, rule editing will be enabled in an interactive,

graphical way. Future work will address testing the method

in different use cases and on using it in automated UI gener-

ation processes.

InputEMail

select email from User u

Domain objects

Rules
OnInput(email) and
Contains(email, @test.org)
 RaiseError(validationError)

||| >>

>>

Attend Lecture

select part1, part2 from
Lecture l

Domain objects

Rules
OnTaskStart(this) 
EnableInput(part1)

Complete
Programming Course

Create
Prototype

Write Test

Create
Specification

Create
Implementation

OnTaskFinish(part1) 
EnableInput(part2) and
EnableTask(CreatePrototype)

Initially
deactivated

>>

>>

Write
Test

Answer Final
Question

Answer
Question 1

Answer
Question 2

Enter
Data

Event

>>

ProcessPayment(type)

RequestPaymentData(type)
Domain objects

Rules

OnTaskStart(this) and Equals(type,
 creditcard - EnableInput(p.cardNo)
OnTaskStart(this) and Equals(type,
 invoice - EnableInput(p.accountData)

ValidatePayment(type)select * from PaymentType p
 where p.type == type

Rules

<validation rules>

REFERENCES

1. Davide Anzalone, Marco Manca, Fabio Paternò, and

Carmen Santoro. 2015. Responsive task modelling.

Proceedings of the 7th ACM SIGCHI Symposium on

Engineering Interactive Computing Systems - EICS

’15, ACM Press, 126–131.

2. Tara Athan, Harold Boley, and Adrian Paschke. 2015.

RuleML 1.02: Deliberation, Reaction and Consumer

Families. Joint Proceedings of the 9th International

Rule Challenge, the Special Track on Rule-based

Recommender Systems for the Web of Data,

RuleML2015 Industry Track Doctoral Consortium.

3. J Brüning, M Kunert, and B Lantow. 2012. Modeling

and executing ConcurTaskTrees using a UML and

SOIL-based metamodel. 12th Workshop on OCL and

Textual Modelling, OCL 2012 - Being Part of the

ACM/IEEE 15th International Conference on Model

Driven Engineering Languages and Systems,

MODELS 2012: 43–48.

4. Jens Brüning, Anke Dittmar, Peter Forbrig, and Daniel

Reichart. 2008. Getting SW engineers on board: Task

modelling with activity diagrams. Lecture Notes in

Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in

Bioinformatics) 4940 LNCS: 175–192.

5. Gaëlle Calvary, Joëlle Coutaz, David Thevenin,

Quentin Limbourg, Laurent Bouillon, and Jean

Vanderdonckt. 2003. A Unifying Reference

Framework for multi-target user interfaces. Interacting

with Computers 15, 3: 289–308.

6. Peter Forbrig, Célia Martinie, Philippe Palanque,

Marco Winckler, and Racim Fahssi. 2014. Rapid Task-

Models Development Using Sub-models , Sub-

routines and Generic Components. Human-Centered

Software Engineering: 5th IFIP WG 13.2 International

Conference, HCSE 2014, Paderborn, Germany,

September 16-18, 2014. Proceedings: 144–163.

7. A. Gaffar, Daniel Sinnig, A. Seffah, and Peter Forbrig.

2004. Modeling patterns for task models. Proceedings

of the 3rd annual conference on Task models and

diagrams 2, 1: 99–104.

8. Matthias Giese, Tomasz Mistrzyk, Andreas Pfau, Gerd

Szwillus, and Michael Von Detten. 2008. AMBOSS : A

Task Modeling Approach for Safety Critical Systems.

Engineering Interactive Systems 2008 5247.

9. Bernardo Cuenca Grau, Ian Horrocks, Boris Motik,

Bijan Parsia, Peter Patel-Schneider, and Ulrike Sattler.

2008. OWL 2: The next step for OWL. Web Semantics

6, 4: 309–322.

10. Steven Harris and Andy Seaborne. 2013. SPARQL 1.1

Query Language. Retrieved from

http://www.w3.org/TR/sparql11-query/

11. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley,

Said Tabet, Benjamin Grosof, and Mike Dean. 2004.

SWRL: A Semantic Web Rule Language Combining

OWL and RuleML. Retrieved from

http://www.w3.org/Submission/SWRL/

12. Filip Kis and Cristian Bogdan. 2015. Generating

Interactive Prototypes from Query Annotated

Discourse Models. i-com 14, 3.

13. Tobias Klug and Jussi Kangasharju. 2005. Executable

task models. Proceedings of the 4th international

workshop on Task models and diagrams - TAMODIA

’05, ACM Press, 119.

14. Jens Kolb, Manfred Reichert, and Barbara Weber.

2012. Using concurrent task trees for stakeholder-

centered modeling and visualization of business

processes. Communications in Computer and

Information Science 284 CCIS: 237–251.

15. Quentin Limbourg and Jean Vanderdonckt. 2003.

Comparing task models for user interface design. The

handbook of task analysis for human-computer

interaction: 135–154.

16. Marco Manca, Fabio Paternò, Carmen Santoro, Lucio

Davide Spano, and Via Moruzzi. 2014. Considering

Task Pre-Conditions in Model-based User Interface

Design and Generation. Proceedings of the 2014 ACM

SIGCHI symposium on Engineering interactive

computing systems, ACM, 149–154.

17. Frank Manola, Eric Miller, and Brian McBride. 2014.

RDF 1.1 Primer. Retrieved from

http://www.w3.org/TR/2014/NOTE-rdf11-primer-

20140225/

18. Célia Martinie, Philippe Palanque, Martina Ragosta,

and Racim Fahssi. 2013. Extending procedural task

models by systematic explicit integration of objects,

knowledge and information. Proceedings of the 31st

European Conference on Cognitive Ergonomics -

ECCE ’13, ACM Press, 1.

19. Célia Martinie, Philippe Palanque, and Marco

Winckler. 2011. Structuring and composition

mechanisms to address scalability issues in task

models. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) 6948 LNCS: 589–

609.

20. Giulio Mori, Fabio Paterno, and Carmen Santoro.

2002. CTTE: support for developing and analyzing

task models for interactive system design. IEEE

Transactions on Software Engineering 28, 8: 797–813.

21. Object Management Group. 2011. Business Process

Model and Notation (BPMN) Version 2.0. Retrieved

from http://www.omg.org/spec/BPMN/2.0/

22. Object Management Group. 2014. Object Constraint

Language v2.4. Retrieved from

http://www.omg.org/spec/OCL/2.4/

23. Object Management Group. 2014. Decision Model and

Notation (DMN). Retrieved from

http://www.omg.org/spec/DMN/1.0/

24. Adrian Paschke, Harold Boley, and Zhili Zhao. 2012.

Standardized Semantic Reaction Rules. Rules on the

Web: Research and Applications: 100–119.

25. Fabio Paternò, C. Mancini, and S. Meniconi. 1997.

ConcurTaskTrees: A diagrammatic notation for

specifying task models. Proceedings of the IFIP TC13

International Conference on Human-Computer

Interaction: 362–369.

26. Fabio Paternò, Carmen Santoro, Dave Raggett, and

Spano Lucio Davide. 2014. MBUI - Task Models.

Retrieved from http://www.w3.org/TR/task-models/

27. Fabio Paterno, Carmen Santoro, and Lucio Davide

Spano. 2011. Engineering the authoring of usable

service front ends. Journal of Systems and Software 84,

10: 1806–1822.

28. Fabio Paternò and Enrico Zini. 2004. Applying

information visualization techniques to visual

representations of task models. Proceedings of the 3rd

annual conference on Task models and diagrams: 105–

111.

29. Axel Polleres, Harold Boley, and Michael Kifer. 2013.

RIF Datatypes and Built-Ins 1.0 (Second Edition).

Retrieved from http://www.w3.org/TR/2013/REC-rif-

dtb-20130205/

30. Frank Radeke and Peter Forbrig. 2010. Patterns in

Task-Based Modeling of User Interfaces. In Task

Models and Diagrams for User Interface Design,

David England, Philippe Palanque, Jean Vanderdonckt

and Peter J. Wild (eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 184–197.

31. Daniel Sinnig, Maik Wurdel, Peter Forbrig, Patrice

Chalin, and Ferhat Khendek. 2007. Practical

Extensions for Task Models. In Task Models and

Diagrams for User Interface Design. Springer Berlin

Heidelberg, Berlin, Heidelberg, 42–55.

32. Jon Stuart and Richard Penn. 2004. TaskArchitect.

Proceedings of the 3rd annual conference on Task

models and diagrams - TAMODIA ’04, ACM Press,

145.

33. H Trætteberg. 2008. UI design without a task modeling

Language - Using BPMN and diamodl for task

modeling and dialog design. Lecture Notes in

Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in

Bioinformatics) 5247 LNCS: 110–117.

34. Jean Vanderdonckt and Francisco Montero Simarro.

2010. Generative pattern-based design of user

interfaces. Proceedings of the 1st International

Workshop on Pattern-Driven Engineering of

Interactive Computing Systems - PEICS ’10: 12–19.

35. Maik Wurdel, Daniel Sinnig, and Peter Forbrig. 2008.

CTML: Domain and Task Modeling for Collaborative

Environments. Journal of Universal Computer Science

14, 19: 3188–3201.

