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ABSTRACT 

User centered design and development of interactive systems 

utilizes theoretically well-grounded, yet practical ways to 

capture user’s goals and intentions. Task models are an es-

tablished approach to break down a central objective into a 

set of hierarchical organized tasks. While task models 

achieve to provide a good overview of the overall system, 

they often lack detail necessary to (semi-) automatically gen-

erate user interfaces. Based on requirements derived from a 

comprehensive overview of existing task model extensions, 

improvements and development methods, an approach that 

integrates logical rules with task models is introduced. By 

means of practical examples it is shown, that the integration 

of rules enables advanced execution flows as well as leaner 

task models thus improving their practical value. 
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INTRODUCTION 
A structured representation of user goals and tasks is a key 

activity in the process of user-centered engineering of inter-

active systems. Task models can serve both as tools for 

analyzing the requirements for an interactive application and 

as input to (semi-) automated user interface (UI) generation 

techniques. For the latter, formal models are needed that con-

tain detailed and precise definitions of all aspects relevant to 

the structural and temporal properties of an UI. The well-

known CAMELEON reference framework [5], for example, 

relies on task models as the first step to capture requirements 

that are subsequently transformed into abstract as well as 

concrete interface representations. 

A range of modeling approaches can be applied to represent 

user tasks, offering different perspectives on a task and/or 

different levels of detail and granularity [15]. A high-level 

distinction can be made between process models which rep-

resent the control flow between tasks of approximately 

similar level of abstraction, and hierarchical task models 

which focus on the breakdown of tasks into a hierarchy of 

subtasks. Hierarchical models have gained considerable pop-

ularity in the HCI field due to their ability to incrementally 

transform high-level cognitive user goals into low-level ac-

tions at the interface (for an overview and comparison, see 

e.g. [18]). They are, therefore, quite suitable for user-cen-

tered design processes which begin by analyzing user goals 

and requirements independently from their technical imple-

mentation. By including temporal operators, hierarchical 

task models can represent task flow at different levels, thus 

providing specifications that are needed to transform a model 

into an abstract or concrete UI. Concur Task Trees (CTT), 

first defined in [25], are an example of this approach and can 

be considered a de facto standard in current task modeling. 

Process models such as Business Process Model and Nota-

tion (BPMN) [21], while often not considered as proper task 

models, have their strengths in being able to show complete 

task flows involving parallelism, and, in particular, condi-

tional branching which is typically less easy to represent in 

hierarchical models. Both approaches, hierarchical as well as 

process models, rely on graphical representations which are 

illustrative and relatively easy to understand, providing a 

good overview of the task structure shown. A major short-

coming of both, however, lies in the problem that tasks 

involving alternative execution flows due to the complex de-

cision processes involved may considerably inflate the 

model with additional subtasks or flows, or cannot be repre-

sented at all. As an example, consider a typical UI where 

certain inputs are activated or deactivated, either based on 

the user’s previous interaction or the state of some data item 

in the domain model. Actually, modern UIs frequently make 

use of the context-dependent activation or deactivation of 

controls for increasing usability by guiding users through 

their interaction task. Such processes, however, are typically 

cumbersome to model, both in flat process models as well as 

in hierarchical models. In the area of business process mod-

eling, methods based on Business Rules have been proposed 

to capture the manifold conditions and case distinctions that 

are commonly found in such scenarios. A prominent tech-

nique for this purpose is the Object Constraint Language 
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(OCL), used in the UML context [22]. A recent example of 

the approach can be found in the Decision Model and Nota-

tion (DMN) [23], an extension of BPMN which captures 

conditional choices using formal methods like decision ta-

bles. With this technique the authors aim at avoiding overly 

complex process flows and at facilitating the reusability of 

process definitions. While hierarchical task models such as 

CTT have been extended to provide means for specifying 

pre- and postconditions of tasks, the approach is rather lim-

ited and is, for example, not suited to enable general rule-

based modifications of task control flow.  

In general, current task modeling techniques do not suffi-

ciently leverage the potential of rule-based techniques for 

increasing expressiveness, for simplifying the models and for 

facilitating the reusability of definitions for recurring situa-

tions across different task models. Furthermore, a systematic 

and powerful linking with domain models is needed to allow 

rules to check conditions based on data and to manipulate the 

state of domain object. This aspect is also not sufficiently 

covered by existing methods.  

In this paper, we propose an approach that extends hierar-

chical task modelling based on the CTT notation by a generic 

rule mechanism that can check a wide range of interaction 

and data-related conditions as well as enable and disable 

tasks in a flexible manner. Furthermore, an event mechanism 

is introduced by which rules can react on events and raise 

them, thus enabling communication across distant parts of a 

task tree. The task model is closely linked with a domain 

model which is represented in a semantic format as an ontol-

ogy to support cross-application use and the definition of 

generally valid rules. We introduce the concept of rule-based 

tasks that model entire subtask structures with complex exe-

cution flows in a single task entity, thus simplifying the 

overall task model and supporting reusable task patterns.  

In the following, we first provide a comprehensive overview 

of existing extensions of CTT-based task models and review 

the respective development environment, concluding with 

requirements for modeling tasks in a way that enables the 

generation of complex dialogs. Next, we introduce our rule-

enhanced task modeling technique which integrates CTT 

task trees with the rule language Reaction RuleML. We also 

provide an overview of our domain modeling approach. Fi-

nally, applications are demonstrated by means of practical 

examples. 

Related Work 

Extensive research has been conducted in the area of task 

modeling for extending the basic techniques such as CTT for 

better manageability and increased uptake. This research can 

be divided into three main directions: First, concepts have 

been proposed that aim to improve expressiveness of the lan-

guage, reducing limitations and enabling a broader range use 

cases. Second, reusability of task model concepts has been 

addressed in order to reduce modeling effort and to achieve 

more consistent task models. Third, user friendly develop-

ment environments and visualization tools were designed to 

foster the practical adoption of the method. In the following, 

we give a brief overview of these developments and high-

light limitations that still exist.  

Task models – extending expressiveness  

Although the original CTT model covers the basic temporal 

structures of task execution well, certain situations such as 

error handling cannot be solved with the original language 

features. Several extensions have been proposed to solve 

limitations by adding new language concepts or task types.  

The authors of [31] propose new operators to enable ad-

vanced error handling in task models. If, for example, a task 

cannot be completed due to an error, the extension allows to 

define error handlers that in turn define alternative tasks that 

will be invoked in such cases. The definition of errors and 

error handlers allows to deal with models where the success-

ful completion of a task cannot be guaranteed. In addition to 

error handling capabilities, a basic concept to enable com-

munication between instantiated task models is proposed. 

Specific actions in a task model can be connected to another 

task model thus influencing its tasks.  

An advanced approach to support task models for collabora-

tive scenarios is elaborated in [35]. The Collaborative Task 

Modeling Language (CTML) introduced there adds precon-

ditions to control execution by enabling or disabling tasks 

based on defined requirements. In addition, events are used 

to define dependencies between tasks that have no direct 

connection, as well as to allow communication between mul-

tiple model instances. In [8] the authors use messages to 

enable communication between distant tasks as well as task 

conditions to restrict access based on user roles and rights. A 

detailed discussion of the influence of preconditions in task 

models is presented in [16]. It is shown that preconditions 

can both be used in task models to refine interaction flows 

and to clarify ambiguous parts. On the other hand, precondi-

tions are limited to the activation or deactivation of the tasks 

they are attached to, they cannot perform changes in other 

parts of the task tree and are usually limited to single predi-

cates. If task flow can be dependent on declarative conditions 

as well as on trigger events sent by other tasks, a simple pre-

condition mechanism is not powerful enough to fully specify 

task activation.  

The addition of input and output ports to task elements is 

elaborated in [13], aiming to support semi-automatic gener-

ation of user interfaces. Ports are used to explicitly define the 

data elements necessary to start task execution as well as to 

create output that can be consumed by following elements. 

Explicit integration of objects and domain knowledge is also 

addressed by the authors of the HAMSTERS approach [18]. 

Domain knowledge is, however, usually considered as appli-

cation-specific. Shareable domain models, e. g. expressed as 

ontologies in Semantic Web formats, are not addressed in ex-

isting task modeling techniques. Yet this aspect is gaining 

more relevance, for example, in e-commerce applications 

where product ontologies may be exchanged between manu-

facturers, online-shops, or search engines. 



All introduced concepts share the common goal to enable the 

construction of more complete and sound task models. On 

the downside, all additions lead to more complex models that 

require more effort to create and maintain, hence additional 

techniques to counteract this disadvantage are necessary. 

Task models – patterns and reusability 

In contrast to features that extend expressiveness by primar-

ily adding new language concepts, the elements discussed in 

the following aim at improving the manageability of task 

models. This can be achieved by several measures. First, re-

dundancies should be avoided to prevent the need to re-

create identical tasks. Second, a better overview can be 

achieved if the modularization of task models is supported, 

enabling to divide large models into multiple, clearly repre-

sentable parts. Third, concepts for abstracting fine grained 

task structures should be available to reduce the overall num-

ber of elements and to achieve more compact models.  

To avoid multiple definitions of identical tasks the concept 

of references is introduced in [31]. Instead of defining iden-

tical elements multiple times a reference can be used to point 

to an already existing task thus reducing the overall modeling 

effort. Changes to the original task are applied automatically 

to all references. For example, an Input Name task could be 

referenced whenever the data is necessary. In addition, the 

authors propose the decomposition of monolithic models 

into smaller submodels that can be edited independently. 

Providing reusability for single elements as well as entire 

model fragments is deliberated in [19]. Whole parts of the 

model are extracted as fragments. Variables are added as 

placeholders to enable parameterization of the fragments in 

other contexts. By comparing regular models with models 

that utilize references and fragments, the authors demon-

strate that the latter models can reduce the number of 

operators needed by about 20%. The extraction and use of 

complete task patterns can ease model development signifi-

cantly [7]. Based on the Pattern Language Markup Language 

(PLML) [30] demonstrates a concept to collect and apply 

patterns for task models. Implementation and practical usage 

of patterns for the USer Interface eXtended Markup Lan-

guage (UsiXML) is shown in [34]. Eventually, a combination 

of all introduced approaches is demonstrated by [6]. Task ref-

erences (labelled sub-models), task fragments (sub-routines) 

as well as a collection of task patterns led to a reduction of 

about 41-46% in terms of necessary elements and operators, 

resulting in smaller and easier to handle models.  

While modularization and reusability of tasks and the use of 

common task patterns leads to smaller task models there is 

still a challenge as to how the patterns are specified effec-

tively and how they can capture complex interactive 

behavior in a compact form. 

Task models – development 

To foster the adoption of modeling methodologies usable 

tools are necessary which are tailored towards particular 

needs of the prospected user group. 

The CTT Environment (CTTE) [20] provides a workbench 

to create CTT models. The hierarchic structure of task mod-

els is represented as a tree. Nodes are used to depict 

composite tasks whereas leaves define concrete, potentially 

executeable tasks that should not be further divided. Associ-

ations between task elements are typed with temporal 

operators to specify possible execution orders, flows as well 

as task dependencies. While providing a usable platform to 

create simple as well as large task models, especially latter 

ones are hard to create and maintain due to the necessary 

screen size needed to visualize these models. Ways to im-

prove usability and facility of CTTE are introduced in [28]. 

Extensions range from simple changes, like abbreviated la-

bels or visually merged associations, to complex features like 

a fish eye view that scales elements depending on the current 

focus. Further extensions influenced by modern web devel-

opment techniques are shown in [1]. Visualization and 

control elements adapt in accordance to available screen size.  

In addition to the introduced extensions of [28] described 

above, a text based representation is proposed that can be 

used as an alternative to the tree visualization. Tasks are dis-

played as text elements in a list where indenting is used to 

reflect the hierarchy and icons to depict temporal operators. 

In a similar fashion, the tool TaskArchitect [32] complements 

the common tree visualization with an additional tree-table. 

Every task is represented as a row, whereas columns are used 

to display and configure properties like difficulty or role. 

An editor (AMBOSS) to create CTT models, extended spe-

cifically for security critical systems, is described in [8]. In 

addition to basic CTT elements, modeling of domain objects, 

roles, preconditions and messages are supported. Roles can 

be used in preconditions, tasks can be connected with domain 

concepts and messages are utilized to enable communication 

between tasks without a direct connection. The tree visuali-

zation contains icons to depict concepts whereas additional 

information is available in a detailed view. Although icons 

provide sufficient information, they can be challenging to 

learn and memorize for new users.  

Alternatives to tree visualizations of CTT are proposed in [4] 

and [14]. Former approach uses activity diagrams from the 

Unified Modeling Language (UML) specification, whereas 

in the latter case tasks are expressed using the Business Pro-

cess Modeling Language (BPMN) notion. Both cases have 

in common, that an already existing and well defined process 

modeling language is used in conjunction with a mapping 

that defines the transition from process model to task model 

and vice versa. Due to the different paradigms, transitions are 

subject to loss of information as not every expression can be 

mapped to a distinct counterpart. To solve this particular 

problem, the approach described in [33] restructures the in-

terface generation process to be solely based on BPMN thus 

avoiding a transition to a hierarchical task model completely. 

The usage of an existing process modeling language in all 

three variants is seen by the authors as an advantage regard-

ing the availability of already existing tools and trained users. 



However, in practice and due to the different focus of process 

languages, they can lead to even larger models or ambiguities 

not translatable to a hierarchical task model.  

REQUIREMENTS FOR ADVANCED TASK MODELING 

Concluding from the analysis of related work concerning the 

three aspects expressiveness, reusability and development 

the following requirements should be considered for state of 

the art task modeling. 

Language constructs beyond basic structural and temporal 

concepts:  

• Events: As described in related work, the integration of 

events enables communication between tasks that are 

not directly connected. In addition, external services are 

enabled that both consume or produce such events. 

• Conditions: Conditions for different phases of task exe-

cution (e.g. pre-, post- and contextual) to enable flexible 

conditional task flows. When defining conditions, do-

main model elements to be checked must be accessible 

in a flexible manner (e. g. based on query techniques).  

• Domain model integration: Methods to read and manip-

ulate (application independent) domain model 

information should be provided. 

Patterns and reusability: 

• References: References provide a simple, yet practical 

way to avoid multiple definitions of identical tasks 

within a model.  

• Variables and patterns: Utilizing variables, single tasks 

or whole fragments can be reused. This facilitates the 

collection of patterns to ease development of common 

scenarios whilst enabling to focus on crucial parts.  

Model development: 

• Modularization: The option to split a single model into 

multiple fragments improve maintainability and feasi-

bility. It should also be possible to modularize and adapt 

models for different phases or user roles. 

• Flexible tree layout and alternative view: Task trees 

should both adapt dynamically to available screen real 

estate as well as avoid visual clutter wherever possible. 

In addition, an alternative view, based on tables or lists, 

can further increase usability.  

Current extensions either try to extent CTT in terms of ex-

pressiveness or try to simplify development by 

modularization and reuse. However, especially modeling 

challenges that require a high level of detail or depend on 

conditional workflows can lead to large, thus difficult to 

maintain CTT models. The subsequently suggested rule 

based task aims to both improve expressiveness as well as 

enable a leaner representations of expressed behaviors.  

RULE-ENHANCED TASK MODELS: MOTIVATION AND 
REQUIREMENTS 

One of the strengths of modern graphical UIs is that they can 

guide the user through interactions with complex dependen-

cies on prior inputs or the current state of the application. 

This may be done, for example, by activating or deactivating 

interaction objects, by expanding additional parts of a screen 

form, or by changing the values that can be selected in a 

widget. Such fine-grained and complex dependencies are 

typically hard, if not impossible, to express with standard 

CTT-like techniques. Especially when complex case distinc-

tions need to be considered, simple concepts like task 

preconditions are insufficient to model the resulting pro-

cesses economically and precisely. Consider, for example, 

two dropdown lists in a form from which the user can select 

in order-independent fashion, but where the values selectable 

in one list depend on the selection in the other. The only so-

lution in standard CTT would be to create one subtask for 

each combination permitted which would inflate the model 

considerably without providing additional insight in the 

overall task flow. The general point is here that many inter-

action flows depend on the underlying logic of the 

application. Aspects of what is usually called ‘business logic’ 

should therefore be expressible in the task model, if they in-

fluence the user’s interaction with the system.  

For these reasons, we propose to extend tasks with a rule con-

cept that is powerful enough to cover different types of 

business logic as well as event-based dependencies between 

tasks. In respect to the forward modeling approach intended 

by the CAMELEON framework, as demonstrated in [27], 

rules are not designed to anticipate information of the ab-

stract or concrete interface, rather they provide means to 

leverage their derivation. In detail, rule-enhanced task de-

scriptions can serve different purposes. First of all, rules can 

be used to conditionally influence the execution of single 

tasks as well as whole task flows. In addition, it should be 

possible that rules create ‘virtual’ subtasks on the fly without 

defining them in the hierarchical model first. Moreover, rules 

can be used to improve soundness and utility of task models 

by embedding decision models within the task model, cover-

ing all use case specific information in a single model. By 

using rules to cover the definition of fine grained workflows 

instead of modelling each step explicitly, the overall size of 

models can be reduced, thus increasing transparency and fa-

cilitating the development of models. For example, a single 

rule could be used to define order, datatypes and dependen-

cies of user inputs and replace several single tasks that would 

otherwise be necessary. Finally, rule-based tasks might be re-

used in different applications or task models reducing 

redundancy and effort in building the models.  

In order to realize described goals, three main requirements 

have to be met. First, a well-defined domain model is needed 

to allow the formulation of conditions that check application 

state and to manipulate state in a rule’s action part. Second, 

a powerful rule language is necessary, providing a suitable 



level of expressiveness to enable both the definition of logi-

cal expressions as well as the utilization of domain and task-

model knowledge. It should also be able to use events for 

triggering actions. Third, the semantics of rule based tasks 

have to be defined in order to specify its use in task models. 

Running Example 

The following example outlines a typical process of a cus-

tomer in an e-commerce (web-)frontend. Although tasks like 

product browsing or search are rather simple, particularly the 

customization of products, ranging from single selections to 

multiple interconnected choices, can lead to negligible mod-

eling challenges.  

Goal of the task model is to encompass a shopping scenario 

for customizable fashion products. A domain model is used 

that contains conceptual knowledge about garments as well 

as instance data of sold products. First, the customer starts 

by picking a category (product class) from a set of available 

categories. Next, he has to choose the desired product from 

a list of available products. To ease search, filters are pro-

vided. After selecting a product, a detail view enables further 

product configuration. The properties color, size and logo 

can be configured. Configuration is restricted by the follow-

ing constraints: A logo is only available if the selected size is 

‘L (5)’ or larger. If the color ‘black’ is selected, no logo se-

lection is possible.  

Figure 1 depicts a basic task model for the given scenario. 

Buy Customized Product is modeled as the parent task, spe-

cialized in three subtasks. Initially, a product class like t-

shirts or sweaters has to be selected (Select Product Class). 

Upon selection the transition enabling with info exchange is 

used to activate the Choose From Product List task whilst 

passing the selected class as parameter. This task is further 

differentiated into the subtasks Filter Products and Select 

Product. While former is used to provide filter mechanisms, 

latter one is used to select the chosen product. Finally, after 

a product is selected, the product instance is passed, enabling 

the task Configure Product. Although the model already pro-

vides a sufficient overview additional details are required if 

it shall be used for (semi-)automatic interface generation.  

 

Figure 1. Comprehensive task model for the described sce-

nario. First, a product class is selected to enable product 

selection. Second, a product is chosen to activate product con-

figuration. Notation derived from CTT Environment [20]. 

According to the described scenario, Configure Product is 

restricted by certain conditions. Using basic CTT, several 

subtasks could be added to reflect configuration of individual 

product properties. In this case Select Color, Select Size and 

Select Logo are added as individual tasks (figure 2). In addi-

tion, choice options could be added as additional subtasks, 

thus providing more detail. However, described restrictions 

like the option to enable or disable logo selection based on 

certain color or sizes would result in a not reasonable effort 

in comparison to the rather simple complexity. Moreover, ad-

vanced constraints could not be expressed with basic CTT 

concepts thus making an additional concept, like the pro-

posed rule type, necessary. 

 

Figure 2. Task model extended with configuration options for 

color, size and logo. Addition of all possible combinations 

would lead to an unfeasible, hard to maintain model. 

Domain model 

Task models and domain models represent two complemen-

tary perspectives on an interactive application and must be 

connected if the models are to be transformed into an abstract 

or concrete UI, in particular if automated generation is in-

tended [18]. Domain model data serve as input and output of 

tasks but also for testing conditions that activate tasks. For 

generating systems, domain models need to contain not only 

conceptual entities but also the instance data to be processed. 

There are several ways to realize domain models that can be 

differentiated regarding the underlying model paradigm and 

the level of expressiveness. For instance, relational models 

can be used to define entities and their relationships. Alt-

hough already providing sufficient information for a wide 

range of use cases, advanced concepts like inheritance or 

custom datatypes with fixed value ranges are missing, thus 

making more expressive formats necessary.   

Semantic formats like the resource description framework 

(RDF) [17] or the ontology web language (OWL) [9], rely 

on a graph-based data model that offer a high level of flexi-

bility and expressiveness. They provide capabilities to create 

platform independent domain models which is increasingly 

a requirement if a model is to be shared among different 

stakeholders or applications, as is the case, for instance for 

product models in e-commerce. Semantic models provide 

constructs for, amongst other things, custom data types, 

structured relationships and inheritance. In addition, rules to 

define generalized domain level constraints are supported ei-

ther by adding restrictions for relationships or datatypes or 

by using an extension like the semantic web rule language 

(SWRL) [11], or Reaction RuleML which we introduce in 

the next section. However, to avoid possible duplication of 

domain knowledge, rules embedded in task models should 

be clearly separated from rules in the domain model. Rules 

in the domain model should be universally valid, whereas 
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rules ins task models should only be used to add use case 

specific knowledge relevant for interactive behavior. For in-

stance, if the domain model contains a user concept and 

every user has to supply a password with at least eight char-

acters, this should be added as a constraint within the domain 

model. In contrast, a restriction to allow registration only for 

certain email addresses is most likely application specific 

and therefore a candidate for a task model rule.  

To make use of domain model concepts in task model ele-

ments as well as rules, mechanisms to establish a connection 

are necessary. A connection can be achieved either by creat-

ing a static link or with a query mechanism that provides 

loose coupling and a higher flexibility. Advantages of latter 

approach are discussed in [12], where database queries are 

used to connect elements of discourse models with domain 

model elements. In regard to semantic domain models, spe-

cialized query languages like SPARQL [10] are available to 

create a connection.  

To conclude, a well-defined domain model is necessary to 

enable rules that make use of defined concept by utilizing a 

suitable query language. Rules itself should be used to ex-

press application specific requirements that extend available 

domain model knowledge.  

Rule language  

A rule language used to define constrains for task models has 

to meet several requirements. First of all, a generic rule struc-

ture, that is capable to support the definition of different 

specific rule types, is necessary. In addition, an expressive 

rule language is required to build logical equations in accord-

ance to the introduced generic structure.  

The RuleML project aims to provide an overarching specifi-

cation of web rules by standardizing commonly used rule 

concepts [2]. To enable cross platform use, rules can be seri-

alized using the Rule Interchange Format (RIF) [29]. 

RuleML pursues an extensible approach and is divided into 

multiple modules. Within this context, the module Reaction 

RuleML [24] serves as a suitable archetype to derive the con-

cept of rules for task models due to its particular focus on 

rule based event processing. As shown in figure 3, a rule is 

separated into two essential parts: Initially a premise is de-

fined, stating facts that either evaluate to true or false. A 

consequence is provided to define changes or actions to be 

executed if given premise evaluates as true. In Reaction 

RuleML both basic parts are further differentiated to enable 

a wide range of use cases. On the one hand, premises are di-

vided into events (on) and conditions (if). Events are used to 

specify triggers that invoke evaluation when they occur 

within the model whereas optional conditions can be used to 

provide further restrictions that have to be evaluated before 

subsequent processing. On the other hand, consequences are 

divided into conclusions that can derive knowledge (then) or 

invoke actions (do).  

 

Figure 3. Basic building blocks of Reaction RuleML. Premises 

are build using events or conditions whereas consequences 

lead to conclusions and actions. 

Building blocks of Reaction RuleML can be combined to 

create different rule types, each geared towards a specific use 

case. Table 1 lists valid variations and explains each rule type 

briefly. Beyond introduced elements, the specification pro-

vides additional constructs like scopes or logical alternatives 

(else) to enable definition of advanced rules. In the scope of 

this paper presented basic elements are sufficient for further 

discussion and demonstration.  

Combination Name / Purpose 

[if]  [then] 

 

Derivation rule: Tests existing 

knowledge to gather new insights. 

[if]  [do] Production rule: Tests existing 

knowledge and executes actions if 

conditions evaluated as true.  

[on]  [do] Trigger rule: Is invoked on occur-

rence of a certain element and does 

execute an action.  

[on][if]  [do] Event Condition Action (ECA) rule: 

Invoked on occurrence of a certain 

event with an additional condition to 

determine execution of an action.  

Table 1. Typical rule types made from of Reaction RuleML 

building blocks.  

To finally make use of described rule types, it is on the one 

hand necessary to provide ways to use domain and task 

model knowledge as well as state information in premises. 

On the other hand, means to express consequences are nec-

essary (see figure 4). Such operations are enabled by n-ary 

predicates. For instance, Equals(x,y) is a commonly used 

predicate to compare two variables for equality, resulting ei-

ther in true or false. Thus, to make use of available 

information, predicates specifically designed for task model 

and domain models need to be defined.  

 

Figure 4. Generic structure of rules for task models. Premises 

are checked against domain model or the current state, 

whereas consequences are applied to the task model. 
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Basic predicates  

Comparisons, set operations or logical expressions are essen-

tial building blocks to create rules. Therefore, predicates to 

enable these operations have to be provided. Typical con-

cepts like Equals(x,y), Greater(x,y) or Less(x,y) are used to 

enable comparisons and support common datatypes. Testing, 

whether an element belongs to a set or not, is provided by set 

operations like Contains (x,y). Finally, logical expressions to 

connect (and, or) or negate (not) atomic parts are essential to 

compose advanced rules. Given examples are non-exhaus-

tive and used to give a general impression about basic 

predicates.   

Event predicates 

ECA or trigger rules use events as enabler to invoke their ex-

ecution. Therefore, the following predicates are used to 

create listeners for automatically or manually raised events 

within the task model. Automatically raised events occur 

during execution of the task model. Every action or change, 

like the activation of a task caused by user interaction, is 

made available as an event and can be used as a trigger. On 

the contrary, manual events are raised explicitly by action 

predicates used in rule consequences. To conclude, the event 

predicates defined below provide flexible means to react on 

activities within the task model. Concepts like pre- and post-

conditions or error handling are covered by this approach and 

benefit from the higher expressiveness of rule terms.  

Predicate Description 

OnTaskStart(tx) 

OnTaskFinish(tx) 

OnTaskInterrupt(tx) 

OnTaskResume(tx) 

Listener for state changes of 

specified task tx. If tx is omit-

ted, the trigger is bound to the 

task it was defined in.  

BeforeTaskStart(tx) 

BeforeTaskFinish(tx) 

Listener for state changes spe-

cifically to recreate pre- and 

postconditions. 

OnInput(dx) Listens for inputs for element 

dx from the domain model 

made within a task. 

OnEvent(ex) Generic event listener that reg-

isters for a specified event ex  

OnError(ex) Listener for errors raised during 

the execution of tasks. 

Table 2. List of predicates to register for events occurring 

within task models. Events are either raised explicitly by ac-

tion predicates or automatically by task model state changes. 

Condition predicates 

Conditions can make use of available information contained 

both in the task model as well as in domain model. In the 

former case, state information about the task model is of par-

ticular interest. As demonstrated in [3], task models can be 

transformed to state charts that enable to query state infor-

mation. Therefore, predicates are necessary to get hold of 

such state information. In the latter case, a predicate to test 

or get hold of additional domain model concepts is needed.  

Predicate Description 

TaskStarted(tx) 

TaskActive(tx) 

TaskFinished(tx) 

TaskCancelled(tx) 

To determine the current task 

state. Tests, if task tx (identified 

by unique name or id) is cur-

rently in respective state (started, 

active, finished, cancelled).  

QueryConcept(qx) Executes a query against the do-

main model and makes the result 

available.  

Table 4. Predicates to create conditions. Used to get infor-

mation from the task model and domain model. 

Conclusion predicates 

Derivation of new knowledge is the purpose of conclusion 

predicates. In this particular case, new domain or task model 

knowledge could be deduced. Imagine a task model that con-

tains many concurrent and optional tasks that reflect 

extensive activities found, for example, in the area of enter-

prise resource planning. State information about finished or 

unfinished tasks could be used to derive a user role which in 

turn could trigger certain rights or features. Although provid-

ing a powerful mechanism, conclusion predicates and 

knowledge derivation are out of scope for this paper.  

Action predicates 

Enabling reactive behavior is the purpose of action predi-

cates. In detail, either existing information is altered or new 

information is added. For example, in the former case an ex-

isting task could be activated or deactivated whereas in the 

latter case a new task, initially not existent within the model, 

could be added. Tasks that are created by such an action are 

called virtual tasks. They are particularly useful if, for exam-

ple, a lot of simple tasks for data entry or manipulation need 

to be created. By creating virtual tasks procedurally, fine 

grained workflows can be realized without the need to define 

all concrete tasks and possible branches manually thus re-

ducing visual clutter.  

In addition to manipulation and creation of task elements, ac-

tion predicates are provided to raise events or errors. Both 

can be utilized by using the previously introduced OnEvent 

or OnError predicates. Possible event types should be col-

lected centrally in order to ease the definition of rules using 

respective events as triggers.  

Predicate Function 

EnableTask(tx) 

DisableTask(tx) 

Enables/Disables an existing task 

tx and makes it available/unavaila-

ble for execution. Does not 

transition to that task, just enables 

it for subsequent processing. Most 

likely to be used for sub tasks 

within the current hierarchy. 



UpdateTask(tx, px) Updates property px of task tx. 

Used to update available task prop-

erties like min/max executions.  

CreateInput(dx,tx) 

RemoveIn-

put(dx,tx) 

Creates a new or removes an exist-

ing virtual task with the purpose to 

enable input of new information. 

Parameter dx specifies a plain 

datatype or references a concept of 

the domain model. Parameter tx is 

used to define the task where the 

new virtual task is added. If omit-

ted, the current task is used. 

DisableInput(dx,tx) A nondestructive alternative to re-

move input. The Input task is 

disabled but could still be visible 

in the interface in order to give a 

hint of possible options. 

AddValue(id,v) 

UpdateValue(id,v) 

DeleteValue(id,v) 

Used to add/update/delete a speci-

fied value v in the current 

execution state, identified by an id. 

Acts like a key-value store and is 

suitable for rather simple items 

like a role name. 

AddInstance(tx,v) 

UpdateIn-

stance(tx,v) 

DeleteInstance(tx,v) 

 

Adds/update/deletes a value v of 

the given type tx from the refer-

enced domain model. Used to 

update values that may be picked 

in a selection. 

RaiseEvent(tx) 

RaiseError(tx) 

Creates an event / error event with 

a type tx as a parameter. Types 

should be defined centrally to ena-

ble trigger rules for such events. 

Table 3. Action predicates to update task state information 

and domain concepts, add/remove virtual tasks or raise events 

and errors that can be utilized as triggers by other rules.  

To conclude, introduced predicates provide a collection of 

functionalities to be used to both define rule conditions and 

consequences. Practical examples were used to derive and 

refine proposed predicated. Proposed predicates are the re-

sult of made experiences of their application and discussion 

in real world scenarios. If, however, additional requirements 

arise due to the specifics of a given scenario, extensions can 

be added easily. Present predicates are designed to extend ex-

pressiveness and foster simplification of common use-cases 

whilst integrating seamlessly with existing task model con-

cepts. Finally, the next section conceptualizes a frame to put 

rules and predicates to use. 

Rule based task  

To finally make use of the introduced rule concept it is nec-

essary to extend the existing CTT meta model to provide 

means that enable to add rule definitions. Basic CTT differ-

entiates two main concepts: on the one hand, abstract (also 

composite) tasks are composed out of an arbitrary number of 

subtasks whereas on the other hand concrete (also atomic) 

tasks mark single executeable units. Specified in a formal 

meta model (e.g. [26]), abstract and concrete tasks usually 

derive common properties from a task superclass. Further-

more, concrete tasks are specialized into user-, interaction-, 

and system tasks. Rule definitions should be possible for 

both types in order to indicate their area of influence on the 

overall model. For example, rules for abstract tasks could be 

used to process events raised by associated children, whereas 

rules for concrete tasks are more likely to define conditions 

or actions that are relevant during its execution.  

In order to enable the definition for both abstract and con-

crete tasks, the task superclass is extended with two 

additional associations as shown in figure 5. Firstly, the class 

DomainObjectReference is used to reference domain model 

concepts that are going to be used in rule definitions. Sec-

ondly, rules are added within the RuleDefinition class. This 

separation of concerns was chosen to avoid a mixture of 

query and rule terms aiming at a better readability. However, 

an implementation may decide to merge both if the used 

query language can seamlessly be embedded into rule defi-

nitions without making them too complex.  

 

Figure 5. The rule based task element serves as a frame to in-

tegrate rules. It inherits all common task properties and 

contains defined rules.  

The application of the extended meta model is done in two 

phases. Existing domain objects that are going to be used in 

rule definitions have to be collected initially. Technically this 

is done by specifying queries that select concepts from the 

domain model, making them available as variables. If, as pre-

viously advocated, semantic domain models are used, a 

semantic query language like SPARQL would be utilized. In 

case no domain object is used, this part may be omitted. Fi-

nally, rule terms are added that abide to the specified rule 

scheme and make use of the previously introduced predicates 

as well as allocated variables resulting from executed que-

ries. To summarize, the following information has to be 

supplied: 

1. Domain Objects: Reference / query to domain ob-

jects to be used in rule definitions. Query results are 

available as variables in rule definitions. 

2. Rules: Definition of rules by using available varia-

bles as well predicates according to the previously 

define rule scheme.  

Application of rule based task element 

Figure 6 demonstrates the application of the rule based task 

for the initially introduced running example. Even though 

Concrete
(User, System, 

Interaction)

Abstract

RuleDefinition

DomainObject
ReferenceTask



original CTT was able to provide a basic solution, constraints 

between product properties could not be expressed properly. 

Proposed rules and predicates will be used to model de-

manded constraints. 

 

Figure 6. Rule element to configure products.  domain con-

cepts to be used in rule definitions are selected.  enables 

input for all selected concepts.  checks the entered sized and 

disables logo input if the size is less than 5.  checks the se-

lected color and disables logo input if the color was black. 

Initially, before any rules can be defined, the domain proper-

ties size, color and logo are selected in order to make them 

available as variables (). For the matter of simplicity, se-

lection of these properties is done using a rudimentary query-

pseudocode. Selected variables are used subsequently within 

the definition of rule terms. As mentioned above, it is neces-

sary that respective properties are specified in a well-defined 

data structure and results are either an object type or a prim-

itive like a string. Only if this is the case, basic predicates can 

be used to define tests like comparisons. 

The first rule () is defined as a trigger rule ([on][do]) 

with the OnTaskStart predicate used to bind to the activation 

of the current rule by using the this keyword as a parameter. 

In the action part of this initial rule the CreateInput predicate 

is used to create virtual tasks to request input for color, size 

and logo. The next two rules are used to define constraints 

between user selections and available options. In the first in-

stance (), a rule to disable input for logo is created if the 

selected size is less than medium (5). OnInput is used to trig-

ger execution of this rule that occurs whenever data is 

entered. The above described condition, regarding the se-

lected size, is expressed using the Less predicate. If the term 

evaluates true, input for logo is disabled by the DisableInput 

predicate. In the second instance (), a rule is defined to dis-

able logo input if the color is black. Similar to previous rule, 

an event listener for the respective datatype is added as well 

as a condition (Equals) to test the value of color. In case the 

condition evaluates true, DisableInput is used as well to de-

activate input for logo. 

Integration and execution 

The created rule based task can now be integrated in the task 

model. The abstract task Configure Product with three con-

crete subtasks from figure 2 is replaced with the new rule 

based task element. As depicted in figure 8a), on initial exe-

cution rule  is activated, creating three virtual tasks that 

enable input for color, size and logo. Selecting a color would 

trigger rule . And, as shown in 8b), if the chosen color 

equals black, the selection for logo is disabled.  

 

Figure 7. The rule element replaces manual created subtasks. 

a) On initial activation three virtual subtasks (select color, 

select size, select logo) are generated. b) If a color is selected 

the last rule is triggered. If the color was “black” the 

conclusion is applied and the logo selection would be disabled. 

The given example provides no means to reactivate the se-

lection once they are deactivated although this could easily 

be solved by adding an alternative (else) to the clause. In gen-

eral, the modeler is responsible to avoid conflicts or 

deadlocks though this also concerns other CTT extensions 

and could be solved by model-checking techniques [31]. 

To conclude, within this section a rule based task was moti-

vated, specified and demonstrated with an initial basic 

example, yet to fully embrace possible applications and ben-

efits, additional examples are given in the next section. 

USE CASE SCENARIOS 

Following examples briefly show the use of rule based tasks 

in diverging scenarios to demonstrate their benefits. 

Compact task models 

Rule based tasks can be used to create compact task models 

by replacing concrete tasks with virtual tasks created by the 

CreateInput predicate. Especially tree visualizations, used 

commonly by task model editors, benefit in terms of clarity. 

 

Figure 8. The example of [26] is significantly reduced in size 

by using virtual task, thus allowing to focus on critical parts. 
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Use-case dependent constraints 

Domain models are typically aimed towards reuse and use-

case overarching application. However, in order to comply 

with given requirements, it is often necessary to adapt minor 

details. Rules can be used to add such details without chang-

ing the domain model.  

 

Figure 9. Simple use case specific rule that disallows email ad-

dresses from the test.org domain.  

Constraint based behavior 

Rule based tasks enable to express complex constraint based 

behaviors to enable use cases that cannot be expressed using 

original task model concepts. 

 

Figure 10. Task model for a programming course. The lecture 

is divided in two parts. Only if the first part is finished, the 

Create Prototype task should be activated. 

Events to collect information 

The integrated event mechanism allows rules to both raise as 

well as consume events. This can be used to create a central 

task that is notified by other tasks whenever they are com-

pleted successfully in order to count and conditionally 

activate a task or subtree.    

 

Figure 11. Events are raised if a question was solved success-

fully. Only if a certain number of correct answers is counted, 

the final question is activated.  

Reuse by rule parametrization 

As demonstrated in [19], placeholders can be utilized to en-

able reuse and parametrization of single tasks and whole 

subtrees. Applied to rules, parametrization can be used to 

prepare rules for reuse across different task models. For ex-

ample, as indicated in figure 12, a generic Process Payment 

task tree is defined which, due to its parameter, can be in-

serted whenever payment needs to be handled.  

 

Figure 12. Simplified example of a reusable task tree for 

payment processing. The payment type is added as a 

placeholder. Embedded into another context, the placeholder 

would be replaced with the actual payment method. 

 

CONCLUSIONS AND FUTURE WORK 

We have proposed a method for extending hierarchical CTT-

based task models with a powerful rule language that pro-

vides more capabilities than existing pre-/post-condition 

definitions. In particular, event-based control flow can be 

seamlessly integrated with conditional task activation, and 

the temporal operators provided by CTT. We introduce task-

based rules that encapsulate complex interactive behavior in 

their rule descriptions thus removing the need to model each 

possible subtask (structure) explicitly. The creation of virtual 

tasks through rules can greatly reduce the complexity of the 

visual model, especially if complex dependencies control the 

activation of interaction tasks. The rule language makes it 

possible to embed those parts of the business logic in the task 

model that determines task flow. By using graph-based do-

main models in semantic format, application-independent 

models can be coupled with different task models. Generally 

valid rule-based knowledge can be represented at this level, 

allowing to separate knowledge depending on its applica-

tion-specificity. The loose coupling via query-based domain 

model access allows for flexible querying and manipulation 

of domain entities and for abstracting tasks by parameteriz-

ing them with domain concepts. 

By providing means to write more compact task models, the 

technique also supports the need to provide modelers with a 

good overview even of complex models. Developers can use 

the graphical tree model to observe the overall, essential task 

flow while hiding detailed flows in the rule section of tasks. 

At the same time, the language seems powerful enough to 

precisely define all control flow aspects that are needed to 

automatically generate UIs. Currently, we work on imple-

menting an editor for the method. To address usability 

concerns, rule editing will be enabled in an interactive, 

graphical way. Future work will address testing the method 

in different use cases and on using it in automated UI gener-

ation processes.   
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