
Graph-based Visualization of Requirements Relationships

Philipp Heim1, Steffen Lohmann1, Kim Lauenroth2, Jürgen Ziegler1

1Interactive Systems and Interaction Design
2Software Systems Engineering

University of Duisburg-Essen, Germany
{philipp.heim, steffen.lohmann, kim.lauenroth, juergen.ziegler}@uni-duisburg-essen.de

Abstract

Understanding the relationships between require-

ments is important in order to understand the require-
ments themselves. Existing requirements management
tools mainly use lists, tables, trees, and matrices to
visualize requirements and their interrelations. How-
ever, all these visualization forms have a limited capa-
bility to show multiple relationships of different types.
In this paper, we propose to extend traditional re-
quirements analysis and management by a graph-
based visualization that allows to represent multidi-
mensional relations in a direct and flexible way. In
particular, we propose a special presentation form that
enables the exploration of requirements along their
relationships and facilitates understanding of depen-
dencies between requirements.

1. Introduction

Current requirements management tools such as
Telelogic Doors, IrQA, or IBM Requisite Pro mainly
provide spreadsheet-like user interfaces that use lists,
tables, trees, and matrices to visualize requirements
and their relationships. The combination of these visu-
alization forms has proven to be valuable for managing
large sets of requirements. However, these visualiza-
tions have the following shortcomings when used for
analyzing requirements relationships:
• Lists are valuable for presenting large datasets in a

clear and linear way when combined with sophis-
ticated scrolling and paging techniques. At the
same time, the linear way limits their expressive
power to a single dimension in which to arrange
requirements at a time.

• Trees provide a hierarchical visualization and thus
are able to show two dimensions at a time. This
doubles their expressive power compared to lists
but still lacks the capacity to show multi-
dimensional requirements relationships.

• Matrices can be used to show multi-dimensional
relationships between requirements. However,
their rigid way to arrange the matrix hinders the
easy extension of the visualization and hence the
exploration of requirements and their relations.

Against the background of these limitations in ex-

pressing requirements relationships, graphs seem to be
a suitable extension to the visualization forms that are
typically used in requirements management tools. A
graph allows for flexible visualization of multidimen-
sional relationships between requirements by repre-
senting requirements as nodes and relationships be-
tween requirements as edges. So far, graph-based re-
quirements visualizations are solely applied in specific
cases: for instance, some approaches use graphs to
visualize goal models (e.g., [8], [10]); others provide
graph-based visualizations to show requirements tra-
ceability (such as the Traceline extension for Telelogic
Doors [2]). However, existing tools do not provide
graph-based visualizations to support multidimensional
exploration and analysis of various requirements rela-
tionships, thus far.

One reason might be that graph-based visualizations
usually do not scale well to large datasets because their
presentation tends to result in a complex structure that
is hardly manageable or understandable by the user (cf.
[7]). A graph-based visualization is particularly valua-
ble if a small set of highly interrelated requirements
has to be visualized. Therefore, we propose a focus
and context approach that uses a graph-based visuali-
zation not for the presentation of a whole set of re-
quirements but for a limited set that is related to the
requirement of interest.

The remainder of this paper is structured as follows.
In Section 2, we give a more detailed motivation for
the need of an improved visualization for requirements
relationships from the context of a current research
project. In Section 3, we describe our graph-based vi-
sualization approach. We close the paper with a sum-
mary and outlook on future work in Section 4.

2. The Need for an Improved Visualization
of Requirements Relationships

We have experienced the need for an improved vi-
sualization of requirements relationships within the
context of the SoftWiki project [8]. A central goal of
this project is the elicitation of requirements from a
large number of geographically distributed stakehold-
ers. For this purpose, we developed a tool set within
the project that enables stakeholders to collaboratively
collect and discuss requirements [5]. We recognized
that clarifying relationships between requirements is a
key to success for effective collaboration, avoidance of
misunderstandings, and prevention of redundancy.
Furthermore, the visualization of related requirements
is highly valuable for exploration and analysis of re-
quirements that have been collaboratively expressed by
many stakeholders. In order to fully understand a cer-
tain requirement, it is important to understand in which
way it interrelates with other requirements (cp. [6]).

Figure 1 shows a part of the user interface of Soft-
Wiki’s collaboration platform. Since all the require-
ments and relationships cannot be shown properly on
one screen, the exploration is executed in top-down
manner similar to other requirements management
tools. The stakeholders start from a list of all require-
ments and navigate to a subset they are interested in by
using different access points and ways of navigation,

such as a hierarchical topic structure (visualized in a
tree view, Figure 1, A), certain keywords (visualized in
a tag cloud, Figure 1, B), or a full-text search. Having
found the requirements of interest in the result list
(Figure 1, C), the stakeholders can select one of them
to make it the focus requirement and see it in more
detail (Figure 1, D).

In order to present the focus requirement within its
context, related requirements are displayed below the
detail view (Figure 1, E). We differentiate the follow-
ing top-level relation types that can exist between re-
quirements:
• User-defined relations: relations that have been

explicitly set by a stakeholder, such as “conflicts
with”, “details”, “depends on”, or “redundant”.

• Content relations: automatically derived relations
based on the text similarity regarding the title and
description of the requirements.

• Shared metadata relations: automatically detected
relations based on shared metadata (such as au-
thor, keywords, organizational unit…)

The related requirements are initially visualized as a

list. By clicking on one of the related requirements,
this becomes the new focus requirement. In compari-
son to the top-down exploration that allows to globally
navigate from one set of requirements to any other set,
the local navigation follows the relations that are ex-

A: tree view

B: tag cloud

ways of navigation C: result list

selected requirement

D: detail view
of the selected requirement

(focus)

E: related requirements
(context)

1

2

Figure 1: User interface of the SoftWiki collaboration platform

plicitly defined or automatically detected between re-
quirements. In Figure 1, the user has chosen that only
related requirements are shown that share certain me-
tadata with the focus requirement (cp. the overlay in
Figure 1, E). Furthermore, the user has highlighted
those requirements that share the metadata “key-
word:spam” and “keyword:junk” by the colors green
and orange.

Whenever a related requirement is selected and
shown in the detail view, the list of related require-
ments is updated accordingly. This way, information
about requirement relationships is partitioned over
multiple screens, placing substantial cognitive load on
the user to keep track of the requirements and how
they are interrelated. To reduce the cognitive load and
facilitate understanding of relationships, we propose a
graph-based visualization of related requirements that
can be used as an alternative to the list visualization.

3. Graph-based Visualization

A graph-based visualization can be expanded node
by node and hence presents information in a single
visualization that is otherwise distributed over multiple
screens. This prevents the stakeholders from getting
“Lost in Hyperspace” [3] and facilitates them to gradu-
ally explore the related requirements. Relations that
exist between requirements can be represented as la-
beled edges helping the stakeholders to comprehend
multiple relationships at a time.

3.1 Visualizing Different Relation Types

Since requirements might be connected by an arbi-
trary number of relationships that can be of all three
top-level types mentioned above, a proper visualiza-
tion of these relationships is required. In order to make
it easy for the stakeholders to see how requirements
are interrelated, the different relation types are also
visualized differently.

R2R1 conflictsWith

R4R3 detailedBy

Figure 2: User-defined relations (undirected
and directed)

User-defined relations are represented as directed

or undirected labeled edges depending on the symme-
try of the relation. For instance, the “conflictsWith”
relation between requirement “R1” and “R2” in Fig-
ure 2 is a bidirectional relation and is therefore repre-

sented as undirected labeled edge. The “detailedBy”
relation is in comparison unidirectional and is hence
represented as directed labeled edge (Figure 2, bot-
tom).

Content relations, which are based on automatically
calculated text similarities between two requirements,
are bidirectional and therefore represented as undi-
rected edges that are labeled with “similarTo” (Figure
3). Depending on the degree of similarity, the edge is
differently weighted, visually represented by its thick-
ness. (The mechanisms used for calculating the text
similarity and thickness of the edges are beyond the
scope of this paper). To visually distinguish content
relations from user-defined relations, the labeled edge
is not filled with a color.

R2R1 similarTo

R4R3 similarTo

Figure 3: Content relations (with different
weights)

In contrast to user-defined and content relations that

both represent direct connections between requirement
pairs, shared metadata relations represent indirect
connections between requirement pairs based on
shared metadata. For instance, the requirements “R1”,
“R2”, and “R3” in Figure 4 all refer to the keyword
(“KW”) “spam”. This commonality constitutes an indi-
rect connection between all three requirements. Meta-
data that is only referred to by a single requirement, in
contrast, is not of interest when analyzing relationships
between requirements. Consequently, such metadata is
not visualized in order to reduce the complexity of the
graph (such as the keyword “security” in Figure 4).

R3

R2

R1

junk

spam

delete

KW: KW:KW:

KW:KW:
KW:

KW:KW:

KW:

security

KW:

Figure 4: Indirect connections based on

shared metadata

To better comprehend indirect connections based on
shared metadata and to identify similarities, conflicts,
and dependencies between requirements more easily,
indirect connections are visualized as direct relations in

our graph. This direct representation by shared metada-
ta relations between requirements is illustrated in Fig-
ure 5.

R3

R2

R1

KW:spam KW:spam

KW:spam

KW:junk KW:junk

KW:junk

KW:delete

KW:delete KW:delete
Figure 5: Visualization of shared metadata

relations

However, the direct visualization of all connections
based on shared metadata between all requirements of
interest quickly results in a graph with a lot of edge
crossings and hence does not facilitate but rather im-
pede understanding (cp. Figure 5). This is because the
number of relations grows exponentially with the
number of requirements that share certain metadata.

To prevent edge crossings, we reduce the number of
relations by arranging all requirements that share cer-
tain metadata in a chain that connects each requirement
only with its predecessor and successor. All other
edges are not shown any longer. For instance, the

shared metadata relations between “R1” and “R3” are
not directly shown in Figure 6 but in a transitive way
via “R2”. We call the resulting type of graph Chain-
Graph due to the chain arrangement of the nodes.

R3R2R1

KW:spam KW:spam

KW:junk

KW:delete

KW:junk

KW:delete
Figure 6: ChainGraph visualization of shared

metadata relations

3.2 The ChainGraph Approach

The ChainGraph directly visualizes shared metadata
between requirements by shared metadata relations
that are organized in chains. Since requirements often
refer to different metadata, they are connected by dif-
ferent chains that ultimately result in a network of re-
quirements relationships (Figure 7). User-defined and
content relations can easily be added to the graph; as
they connect only two requirements at a time, they
need not to get arranged in a chain.

In order to facilitate following shared metadata rela-
tions, the chains can be highlighted in different colors.

B

A

 Figure 7: Application of the ChainGraph approach for visualizing shared metadata relations

In Figure 7, the two chains that are based on the shared
metadata “KW:spam” and “KW:junk” are highlighted
in green and orange, respectively. If a requirement
interrelates with other requirements by more than one
highlighted relation, it is surrounded by as many co-
lored rings as there are relations with this requirement
(Figure 7, A).

We use a force-directed algorithm [4] in order to
layout the graph in an aesthetically pleasing way. The
algorithm optimizes the positions of the nodes so that
all edges are of more or less equal length and there are
as few crossing edges as possible. Since even in simple
settings the problem of automatic label placement turns
out to be NP-hard [1], we treat the labels as additional
nodes to get the placement solved along with the com-
putation of the force-directed layout. This divides a
relation between two requirements into two edges with
the label as an articulated joint in between. That way,
the shape of an edge gets more flexible and hence re-
duces overlapping when two requirements are con-
nected by more than one relation (Figure 7, B).

4. Conclusion and Future Work

In this paper, we proposed a graph-based approach
for visualizing requirements relationships. The ap-
proach allows for a flexible and extensible representa-
tion of multi-dimensional requirements relations and
hence enables a better understanding of these relations.
Together with a specific type of graph, that we call
ChainGraph, we achieve the following advantages for
large sets of requirements:
• Single visualization: Requirements relationships

are displayed in a single visualization instead of
being spread over several screens or windows.

• Direct representation of relations: Existing (also
indirect) relationships between requirements are
explicitly visualized as labeled edges.

• Fewer number of crossing edges: Labeled edges
are treated as nodes and requirements that share
the same metadata are arranged in a chain, thus
reducing the number of edges as far as possible.

• Following paths: The flexible extensibility of a
graph-based visualization in combination with
highlighting capabilities and the ChainGraph ap-
proach provides sophisticated support for the
analysis of relationships and multidimensional de-
pendencies.

At the moment, the presented graph-based visuali-

zation is a standalone application prototype. Our cur-
rent work includes a seamless integration of our ap-
proach into the SoftWiki project that was introduced in
Section 2. Based on this integration, we plan to eva-

luate the benefits of the proposed visualization through
experimental studies with the help of eye tracking. The
goal of the evaluation will be to show that the graph-
based visualization allows for faster understanding of
multidimensional relationships between requirements
than other visualization types such as lists or matrices.
Furthermore, we plan to extend the approach to also
consider the interrelations between requirements and
other resources, such as software artifacts (e.g. test
cases or design artifacts) or externally available do-
main knowledge.

5. References

[1] Christensen, J., Marks, J., and Shieber, S., “An Empirical
Study of Algorithms for Point-Feature Label Placement”,
ACM Transactions on Graphics, 14(3), 1995, pp. 203-232.

[2] DOORS/TraceLine: Visualizing Requirements Traceabil-
ity, http://www.telelogic.com/products/doors/doorstraceline

[3] Edwards, D.M. and Hardman, L., “Lost in Hyperspace:
Cognitive Mapping and Navigation in a Hypertext Environ-
ment”, Hypertext – Theory into Practice, 1999, Intellect
Books, Exeter, UK, pp. 90-105.

[4] Fruchterman, T., and Reingold, E., “Graph Drawing by
Force-Directed Placement”, Software – Practice & Expe-
rience, 21(11), John Wiley & Sons, New York, 1991, pp.
1129-1164.

[5] Lohmann, S., Heim, P., and Lauenroth, K., “Web-based
Stakeholder Participation in Distributed Requirements Elici-
tation”, Proceedings of the 15th IEEE International Re-
quirements Engineering Conference (RE '08), Barcelona
Spain, IEEE, to appear

[6] Pohl, K., Process-Centered Requirements Engineering,
John Wiley & Sons, New York, 1996.

[7] Schraefel, M.C., and Karger, D., “The Pathetic Fallacy of
RDF”, Proceedings of the 3rd International Semantic Web
User Interaction Workshop, Athens, Georgia, USA, 2006.

[8] Sebastiani, R., Giorgini, P., and Mylopoulos, J., “Simple
and Minimum-Cost Satisfiability for Goal Models”, Pro-
ceedings of the 16th Conference on Advanced Information
Systems Engineering (CAiSE’04), Springer, 2004, pp. 20-35.

[9] SoftWiki – research project, funded by the German Fed-
eral Ministry of Education and Research (BMBF) – see
http://www.softwiki.de

[10] Tran Van, H., van Lamsweerde, A., Massonet, P., and
Ponsard, C., “Goal-Oriented Requirements Animation”, Pro-
ceedings of the 12th IEEE International Requirements Engi-
neering Conference (RE’04), Kyoto, 2004, pp. 218-228.

