

Using profiled ontologies to leverage model driven user
interface generation

Werner Gaulke

University of Duisburg-Essen

Duisburg, Germany

werner.gaulke@uni-due.de

Jürgen Ziegler

University of Duisburg-Essen

Duisburg, Germany

juergen.ziegler@uni-due.de

ABSTRACT

Mobile computing and new input methods have increased the

need to create multiple interfaces for one functional core.

Automatic generation of user interfaces attempts a solution

for this problem. Existing approaches either generate

interfaces on the base of a detailed task model or use domain

models in conjunction with interface specific annotations

and transformation rules. While task models are very time

consuming to create and cannot easily be reused domain

models lack the flexibility for use cases which are not

covered or in conflict with used transformation rules. Based

on an overview of existing approaches this paper sets out a

conceptual framework which combines both task model and

ontology based concepts. It is shown that the proposed

combination leads to more abstract and reusable task models.

Author Keywords

Model-Driven Development; User-Interfaces; Ontologies;

Task-Modeling

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous;

INTRODUCTION

Model-based development and generation of user interfaces

have for a long time been proposed as approaches that can

make user interface development more systematic and

effective and that can help to adapt UIs to different platforms

and device characteristics. The uptake of these methods in

practical system development, however, has been slow and

has often lost out against advances in toolkits and

programming environments. One of the reasons for this can

be seen in the effort needed for specifying UI-related models

such as task models and the unfamiliarity of developers with

these methods. In most cases, several models have to be

developed in a coordinated fashion, for example, domain and

task models. In this process redundancies are often created.

In particular, the task models that are frequently advocated

as being central to model-based UI development, while

useful for obtaining an understanding of the user’s tasks,

typically duplicate information that may already be

contained in other models. For example, specifying the

object of an operation together with the operation itself as a

task repeats information – the object – that has already been

described in the domain model. These issues create the need

to avoid redundancies in the model specification and to

provide abstractions that can decrease the overall effort

needed to specify the models.

A possible approach to solving this problem is to leverage

the information already contained in (essential) domain

models and enrich it with information that can be used to

deduce relevant features of the resulting UI.

In this paper, we present an approach that attaches user

interface relevant metadata to an ontological domain model

in order to reuse the added information in the interface

generation process. Two major contributions are made: First,

a model combing the workflow of model driven user

interface development (MBUID) with domain model based

user interface generation is introduced. Second, it is shown

how the combination can lead to more lean and abstract task-

models in terms of reduced redundancies and higher level

task definitions.

The paper begins with an overview of previous research in

the area of MBUID, as well as ontology driven interface

generation. Findings are used to derive a combined model of

both approaches. Based on the model, it is explained how

domain-model information may be leveraged in task models.

Finally, the concluding section outlines objectives and plans

for consecutive research.

RELATED WORK

Model driven development of user interfaces is a well-

established research area and traces back to the late 1960s.

An extensive overview of past and present research, divided

into four main generations, is given in [14]. Approaches of

the current fourth generation can be characterized on the

basis of the unified reference framework by Calvary et. al.

[3]. The reference model is divided into four main steps. In

the first step a concepts and task model is created to define

types and actions for the intended application. The second

step uses an abstract interface model to describe views and

interactions without specifying actual user interface

elements. Determination of real user interface elements is

EICS'15, June 23 - 26, 2015, Duisburg, Germany
Copyright is held by the owner/author(s). Publication rights licensed to

ACM.
This is the author’s version of the work. It is posted here for your

personal use. Not for redistribution. The definitive Version of Record

was published in Proceedings of the 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS '15)

http://dx.doi.org/10.1145/2774225.2775070

http://dx.doi.org/10.1145/2774225.2775070

done in the concrete interface model during the third step.

For example, an abstract 1:N selection could be transformed

to a concrete, single-selection, dropdown widget. Finally, the

instantiation of the final interface is part of step four. The

drop-down widget could be transformed to HTML markup

usable by any web browser. To conclude, the reference

model defines a path starting with a task model leading to a

user interface refined by intermediate steps.

In practice, realizations of the introduced reference model

can be differentiated in regard to used modeling languages

as well as the degree of automation transforming between

model layers. There are many task modeling languages

available, suited for user interface development [18].

Concurrent task trees (CTT) [3], Business Process Model

and Notation (BPMN) [1], UsiXML [21] as well as Useware

Markup Language (UseML) [15] are possible candidates to

create the task-model. An attempt to further standardize task-

models is undertaken in [17]. Although all approaches have

a hierarchical composition of tasks and subtasks in common,

technical realization and supported modeling features differ.

Advanced features like events, conditions and repetitions are

not common across all variants. In particular, the integration

of background knowledge as described in [13] and

connection of tasks with domain model objects varies across

existing languages. Either objects are specified within the

task model or existing objects are referenced. Details about

used objects and types is crucial to transform task models

into an abstract interface.

Domain model based approaches rely on contained

information to generate user interfaces. A domain model

describes concepts and relations of a limited field of interest

in a formal way. In order to be universal and reusable,

application or interface specific data is usually not

integrated. However, an examination of existing domain

model based research revealed that either the domain model

is extended by user interface specific annotations like in

[8],[10],[11] and [12] or additional rules are added [2], [5],

[6] to generate the user interface. Typically, semantic

languages like the resource description framework (RDF) or

the web ontology language (OWL) are used to create domain

models as they provide the necessary expressiveness for even

complex relationships.

To conclude, this section has shown that task model as well

as domain model based approaches are established methods

to generate user interfaces. The following sections introduce

a combination of both methods, aiming to reduce

redundancies as well as provide a way to create more abstract

task models.

OVERVIEW - DOMAIN MODEL BASED UI GENERATION

The following concept emphasizes the role of semantic

domain models by putting it at the start of the generation

process while the task-model is deferred to a subsequent step.

In its entirety, the process is based on the unified reference

model [3] given that the last three steps are nearly identical.

Figure 1 depicts an overview of the process. The next

sections describe all steps in more detail, accompanied by

examples taken from the area of e-commerce.

First, an existing or specially created domain-model as well

as available instance data is selected. Given that domain

models can be very large, a query could be used to limit the

data to only necessary concepts. SPARQL is a standardized

query language for semantic models. It provides the

capability to express CONSTRUCT queries which create

new, usually smaller, models out of existing ones.

Domain models in a typical e-commerce scenario would

contain a categorization and characterization of products

and their attributes. A camera ontology for instance could

differentiate between compact and single lens reflex camera.

Additionally, auxiliary concepts like vendors, shopping cart

and payment methods would be added to enable an e-

commerce frontend.

Second, a metadata model is added, extending the domain

model to a profiled domain model containing user interface

specific information. The metadata model can be split into

two major parts. The first part provides a set of user interface

specific annotations which are attachable to existing domain

model concepts. These annotations add information like

Final
User Inter face

1

2

3

4

5

App-Specif ic
Domain Model

Profiled
Domain Model

Concrete
Inter face

merge

transform

gener ate

quer y

instant iate

Abstract
Inter face Model

Platform

Model

Meta-Data

Model

Inter act ion

Model

Domain Model Instances

Figure 1. Domain model based interface generation process.

The domain model is extended with interface specific

metadata and an interaction model to derive an abstract

interface. The abstract interface is finally transformed to a

concrete interface adhering a given platform configuration.

orders, priorities, or groups that are usually not part of an

application independent domain model. The second part

contains new concepts or relations targeted towards the use

case but are not found in the initial model.

The retailer in this scenario wants to create an e-commerce

store with non-professional consumers in mind. Priority and

grouping is used to emphasize camera properties of

particular interest for the target group. In this case,

advanced technical details are annotated with a low priority

whereas commonly known features like ‘megapixels’ or

‘levels-of-zoom’ get a high priority. Additionally a new

concept ‘luxury cameras’ is added that was not part of the

technically focused domain model.

Third, user interaction is aggregated in an interaction model

that specifies possible tasks within the prospective user

interface. The interaction model contains a hierarchical

structure of tasks connected with concepts and relations from

the underlying domain model. SPARQL queries are used to

connect a task with concepts. Query creation is simplified by

metadata annotations added in the last step. Both, interaction

model and profiled domain model are transformed into an

abstract interface model.

While the profiled domain-model contains products and

properties, the interaction model defines customers’

interaction using these elements. An explore task is defined

to enable browsing of products containing a query to select

top level product classes. The recently defined ‘luxury

camera’ class would also be a part of this result set. Product

properties could be ordered by priority. A checkout task is

defined, involving the concepts of products, shopping cart

and payment methods.

Fourth, the concrete user interface model is generated out of

the abstract interface from the last step. An additional

platform model defines specifics about targeted

environments like screen size or input device. Available

information about the user interface is utilized to select

suitable widgets, input/output elements and layouts.

The e-commerce use case is targeted towards desktop users

and uses a widget toolkit like Java Server Faces (JSF) to

create concrete interface models. The task of exploring

products could lead to a simple two column layout where the

selection of products classes is done in a tree widget and the

listing of products in a data table. Available information like

priorities could be used to decide whether certain properties

are displayed or not depending on available screen space.

Fifth, generated code from the fourth step is instantiated,

deployed and made accessible to the user.

Generated code of the e-commerce platform is instantiated.

In the case of JSF widgets a server side web application

would be generated accessible by a regular web browser.

To summarize, the introduced concept in this section depicts

a model driven workflow for user interface generation.

Unlike task driven approaches, this workflow starts with a

domain model containing all concepts and relations of the

use case. A separate metadata model adds interface specific

information, keeping the original model application-

independent, whilst supporting tasks definition in an

interaction model. Combined information is used to generate

an abstract interface which leads to the final interface. On its

own, this workflow is a rather small deviation from existing

approaches. Hence the next section clarifies which metadata

is added and how interaction models are defined.

EXTENDING THE DOMAIN MODEL WITH UI METADATA

In order to be application independent and reusable domain

models tend to express concepts and relations decoupled

from a concrete use case. Examples for such ontologies

would be large ontologies like dbpedia, but also

comparatively small domain models describing just one or

more product classes for instance. All aforementioned

domain model based approaches add interface specific

metadata to enable and support user interface generation.

The following table contributes a unified collection of

annotations extracted from related research. Information

added by the annotations are essential for the approach of this

paper but can be used by any approach that utilizes domain

models for interface generation.

Annotation Description

Priority

[8],[16]

Defines the priority of a concept/

property (c/p). Priorities can be used by

queries as a criterion for selection or as

a sorting indicator for the interface.

Custom Label

[4]

Overrides the given label of a c/p with a

new label. The new label may be

formally wrong but more suitable for the

targeted user group.

Order

[4],[9],[16]

Sets the order how instances of the c/p

should be sorted. Overrides default

natural ordering (e.g. ascending

alphabetical).

Group

[4],[9],[16]

Adds a group identifier to a c/p. The

identifier is used to pool concepts or

properties in queries or visual interface

elements.

Key Element

[6],[8]

Used as an indicator to mark c/p.

Marked elements could be used as

starting points for navigation or filters.

Widget Type

[4],[9],[16]

Sets a fixed widget type for the user-

interface while overriding default /

derived widgets based on datatypes.

Access Type Sets access control list (ACL)

permission for c/p usage. By default all

elements are read only.

Table 1. Collection of annotations to enhance the domain

model with user interface specific information.

Adding the introduced annotations to an ontology aligns it

towards a specific use case and influences the user interface

generation process. Technically OWL2 annotations are used

to add the specified information. All annotations, as well as

tentative, added new concepts and relations are grouped

together in the metadata model. One domain ontology can be

combined with multiple metadata models, each one targeting

another use case. For example, multiple metadata models

could be used to target different consumer groups by setting

group specific priorities, labels and key elements.

In addition to adjusting the domain model towards the

desired use-case, added metadata information can be used to

leverage creation of task models which is shown in the next

section.

MODELING INTERACTION

In comparison to task model based approaches the profiled

domain model already provides plenty of interface specific

information at this stage. This additional knowledge is used

to create leaner and more abstract task definitions

consolidated in a central interaction model.

The interaction model contains hierarchical task definitions

made in a semantic format derived from the task ontology

OWL-T [22] and the DEMISA task ontology [21]. Using a

semantic format for both, the domain model, as well as the

interaction model, eases the integration of domain concepts

within defined tasks. Figure 2 shows the interaction

metamodel in detail specifying available concepts.

The Task concept is the central element in the metamodel. A

task can either be non-separable and is therefore an Atomic

task or it is composed of multiple subtasks, grouping them to

a Composite Task. Composite tasks can further be configured

to influence the Execution of subtasks. Execution order can

be determined by selecting either parallel for simultaneous,

sequential for linear, arbitrary sequential for random or

choice for single subtask execution. Furthermore, an

additional Configuration can be attached to tasks, providing

a name, description as well as setting a number of minimal

and maximal executions by defining minExecutions and

maxExecutions. Given these basic concepts, creation of task

models is already possible. Similar to comparative task-

modeling languages, tasks and task hierarchies can be built,

even though the connection with domain model concepts is

still missing at this point.

Information from the profiled domain model is incorporated

in two ways. First, input and output elements of a task are

determined by the ModelSelection element. A Query is used

to select concepts and relations from the domain model in

order to use them within the task. The input query selects

concepts from the domain model that will be used during task

processing. Tasks that manipulate data use output queries to

indicate the type of processed concepts. Second, domain data

can be used to create a pre-, post- or context-condition.

Evaluation of conditions influences whether a task is

executed or not. Pre-conditions are checked before a task is

started, preventing the execution if the condition has not been

met. Context-conditions are tested during task execution,

preventing non valid actions based on a contextual state or

property. Post-conditions are validated after the task has

been processed but before it is set as finished. Conditions are

defined by an Expression, containing a query that either

evaluates to true or false when executed.

To conclude, a metamodel suited to build semantic task

models has been introduced. Multiple hierarchical structured

task definitions are combined in an interaction model. Tasks

are linked to domain models using SPARQL queries

selecting used concepts. Linking both models is the key to

reuse and benefit from available domain model knowledge.

Leveraging domain model semantics

Interactions, constructed using the introduced metamodel,

can further benefit from information of the profiled domain

model. Information can be integrated in tasks as well as used

in the user interface generation process. The next sections

discuss three possible adoptions of available information.

First, the profiled domain model allows to formulate model

queries more easily by using metamodel annotations as query

conditions. For example, instead of manually listing all

Figure 2. Interaction metamodel derived from OWL-T [20] and the DEMISA task-Ontology [19]. A task can either be atomic if

it has no subtask or a composite task if it combines multiple subtasks. A task can be made conditional by adding an expression

as pre/post/context condition. Input/Output-connection with the domain model is done by SPARQL queries.

description
Task

Composite Task

Condition

name

hasChildTask

Atomic Task

subClassOf subClassOf

hasPreCondit ion

hasPostCondit ion

hasContextCondit ion

ModelSelection objectPropertyobjectProperty

Execution

objectProperty

Seq. Ar.Seq. ChoiceParallel

type

hasInput

hasOutput

Configuration

minExecutions

maxExecutions

hasConfigurat ion

d
a
ta

ty
p

e
P

ro
p

e
rt

y

ExpressionQuery

chosen concepts, the keyElement annotation could be used as

a query condition to select items for a top level navigation.

Priority or group annotation can also be used to limit or order

query results. The accessType can be employed to determine

allowed operations for the current concepts. Metamodel

annotations integrated as conditions result in queries that can

be adapted to other use cases with less effort. Furthermore,

queries limited just to annotations and abstract concepts like

generic classes can be reused without modifications making

them candidates for a query catalogue.

Second, the process of transforming profiled domain model

and interaction model to the abstract user interface can

benefit from available annotations. Order and Priority

annotations are used to determine sorting of instances in an

interface. The group is used to create visual segments which

can be arranged fitting available screen sizes. KeyElements

may be highlighted to emphasize important elements. If and

how certain concepts are shown is determined by the

accessType annotation. Widget type and custom label

override inferred widget types or existing values.

The third and most advanced benefit is seen by utilizing

domain model relations within the generated concrete user

interface. A simple case would be the selection of

appropriate input and output widgets based on specified

datatypes, ranges and restrictions. Expressiveness of

semantic modeling languages allows characterization of

complex datatypes beyond well-known types found in

programming languages or databases making calculated and

composed datatypes possible. Alongside selecting appro-

priate widgets, a more advanced case would be the utilization

of domain model relations to derive interactions and flows.

For example, relations between concepts can be used to

create dynamic forms with conditional input elements,

depending on available subtypes without having to model

each possible step in the corresponding interaction model.

Figure 3 shows a small extract of an interaction model for the

aforementioned e-commerce scenario. The example shows

the process of product exploration, detail viewing and finally

adding them to the shopping cart. The main composite task

Choose class marks the starting point. The task is used to

create a navigation out of domain model concepts selected

by an input query. The input query selects all classes

annotated with the KeyElement annotation. In this particular

case, a list of product classes would be returned. A query

selecting top level classes could be used to achieve similar

results, but especially in the area of e-commerce custom

navigation hierarchies often do not reflect formal

categorization. Achieving the same result without an

annotated metamodel would result in far more complex

queries because conditions would have to be more detailed

and specific. Once the user chooses a menu item and thus

selects a product category he enters subtasks of the Choose

class task. Three subtasks, namely Explore instances, view

instance and Add to cart are available. The subtasks are not

tied to be executed in a particular order, however

preconditions can influence how interaction is done in

practice. Browsing of all instances is done in the Explore

Instances task. Based on the previously selected product

class, all instances are shown. Product features are ordered

according to their priority value. Additionally, filter widgets

are created for the most important properties. In the domain

of cameras, zoom level, megapixels and vendor could be

such filters. If a product instance is selected, the View

Instance task is executed. Without a selected instance the

task would not be started as indicated by the precondition.

Appearance of the detail view is influenced by group

annotations used to create visual blocks. Relations within the

domain-model, connecting product instances with other

similar products or accessories, are used and displayed.

Finally, the Add to cart task enables the user to put a product

in his cart. In contrast to previously used concepts, the

shopping cart instance has to be manipulated in order to be

able to add the product. The accessType annotation is used

to allow write access. As a result an updated cart instance is

produced, indicated by the output query.

In conclusion, it has been shown how (profiled) domain

models may be used to leverage model driven user interface

generation. Three possible ways have been explored and

disccussed: creating simplified domain queries to connect

tasks with domain models, during transformation to abstract

interfaces and in generated concrete interfaces.

OUTLOOK & CONCLUSION

This paper introduced a concept, combining task based and

domain model based user interface generation approaches in

a unified model. Goal of this combination was to remove

redundancies between domain models and task models as

well as integrating the domain model deeper into interface

generation processes. For the latter case, a set of interface

specific domain model annotations was composed. The

Figure 3. Extract of the e-commerce task model showing

typical actions to browse products, view product and add

products to a shopping cart for checkout (not shown here).

Depicted queries are simplified.

Choose class

Condit ions

Input

Output

-

Select classes with
annotation KeyElement

Explore Instances

Condit ions

Input

Output

Select instances of class

-

View Instance

Condit ions

Input

Output

Pre: instance by id

Select instance by id

-

Add to cart

Condit ions

Input

Output

Pre: instance by id

Select shopp ing cart inst an ce

Update shopping cart
instance

annotations are used to demonstrate how enriched domain

models can ease the creation of task models, domain queries

and the interface generation process itself.

Considerably more work is needed to clarify technical details

and concepts introduced in this paper. Furthermore, a library

of reusable abstract task models will be created to further

reduce necessary modeling efforts. To demonstrate a real

world application of the described concepts, a modeling

environment, targeted towards non-technical users, is

currently implemented based on previous work described in

[7]. An evaluation will focus on ease of use and overall

modeling efficiency compared with competitive solutions.

REFERENCES

1. Bacha, F., Oliveira, K., and Abed, M.A model driven

architecture approach for user interface generation

focused on content personalization. 2011 Fifth

International Conference on Research Challenges in

Information Science, (2011), 1–6.

2. Butt, A.S., Haller, A., Liu, S., and Xie,

L.ActiveRaUL: Automatically Generated Web

Interfaces for Creating RDF Data. semantic-web-

journal.net 0, (2013).

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J.A Unifying

Reference Framework for multi-target user interfaces.

Interacting with Computers 15, 3 (2003), 289–308.

4. Canadas, J., Palma, J., and Túnez, S.Model-Driven

Rich User Interface Generation from Ontologies for

Data-Intensive Web Applications. Proceedings of the

7th Workshop on Knowledge Engineering and

Software Engineering at the 14th Conference of the

Spanish Association for Artificial Intelligence

(CAEPIA 2011), (2011).

5. Correa, M.C., Deus, H.F., Vasconcelos, A.T., et

al.AGUIA: autonomous graphical user interface

assembly for clinical trials semantic data services.

BMC medical informatics and decision making 10, 1

(2010), 65.

6. Eriksson, H., Fergerson, R.W., Yuval, S., and Musen,

M.A.Automatic generation of ontology editors.

Proceedings of the 12th International Workshop on

Knowledge Acquisition, Modelling and Mangement

(KAW’99), (1999).

7. Gaulke, W. and Ziegler, J.Entwicklung semantischer

Produktdatenmodelle durch Domänenexperten:

Fehleranalyse und Werkzeugunterstützung. Mensch &

Computer 2014 - Tagungsband, De Gruyter

Oldenbourg (2014), 225–234.

8. Hildebrand, M., Ossenbruggen, J. Van, and Hardman,

L./facet: A Browser for Heterogeneous Semantic Web

Repositories. The Semantic Web - ISWC 2006,

Springer Berlin Heidelberg (2006), 272–285.

9. Khushraj, D. and Lassila, O.Ontological approach to

generating personalized user interfaces for web

services. The Semantic Web–ISWC 2005, (2005),

916–927.

10. Liu, B., Chen, H., and He, W.Deriving user interface

from ontologies: a model-based approach. 17th IEEE

International Conference on Tools with Artificial

Intelligence (ICTAI’05), (2005), 6 pp.–259.

11. Lohmann, S., Kaltz, J., and Ziegler, J.Model-driven

dynamic generation of context-adaptive web user

interfaces. Models in Software Engineering, (2007),

116–125.

12. Macías, J. a. and Castells, P.Providing end-user

facilities to simplify ontology-driven web application

authoring. Interacting with Computers 19, 4 (2007),

563–585.

13. Martinie, C., Palanque, P., Cedex, T., and Fahssi,

R.Extending Procedural Task Models by Systematic

Explicit Integration of Objects , Knowledge and

Information. (2013).

14. Meixner, G., Paternò, F., and Vanderdonckt, J.Past,

Present, and Future of Model-Based User Interface

Development. i-com 10, 3 (2011), 2–11.

15. Meixner, G., Seissler, M., and Breiner, K.Model-

driven useware engineering. Studies in Computational

Intelligence 340, (2011), 1–26.

16. Mori, G., Paterno, F., and Santoro, C.Design and

development of multidevice user interfaces through

multiple logical descriptions. IEEE Transactions on

Software Engineering 30, 8 (2004), 507–520.

17. Paternò, F., Santoro, C., Raggett, D., and Davide,

S.L.MBUI - Task Models. 2014.

http://www.w3.org/TR/task-models/.

18. Szwillus, G.Task Models in the Context of User

Interface Development. Studies in Computational

Intelligence 340, (2011), 277–302.

19. Tietz, V., Rümpel, A., Voigt, M., Siekmann, P., and

Meißner, K.Tool support for semantic task modeling.

Proceedings of the 3rd International Conference on

Web Intelligence, Mining and Semantics, (2013),

40:1–40:12.

20. Tran, V.X. and Tsuji, H.OWL-T: A task ontology

language for automatic service composition.

Proceedings - 2007 IEEE International Conference

on Web Services, ICWS 2007, Icws (2007), 1164–

1167.

21. Vanderdonckt, J.A MDA-Compliant Environment for

Developing User Interfaces of Information Systems.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

