
Automated Generation of a Faceted Navigation
Interface Using Semantic Models

Tim Hussein and Daniel Muenter
University of Duisburg-Essen

Lotharstr. 65, 47057 Duisburg, Germany
{tim.hussein, daniel.muenter}@uni-due.de

ABSTRACT
In this paper, we introduce a concept for automated genera-
tion of faceted navigation widgets. These widgets are gener-
ated on the fly depending on the type of data to be displayed.
For this purpose, we use semantic models for data represen-
tation and apply generic SPARQL queries, which makes the
navigation creation completely independent from the content
and structure of the underlying models.

Author Keywords
Model-driven UI Generation, Faceted Browsing

ACM Classification Keywords
D.1.2 Software: Programming Techniques—Automatic Pro-
gramming

INTRODUCTION
An intelligent navigation structure can help the user find
things faster and with less effort. Often, the information
flood is just overwhelming for the user – especially in en-
vironments with lots of items to choose from (which is very
typical for online e-commerce portals or news sites). There
are several ways to overcome this problem, each with its own
benefits and drawbacks. Keyword search, (fixed) navigation
bars, or recommender systems are often used for this pur-
pose.

FACETED BROWSING
A relatively novel approach of navigating structured data is
called faceted browsing [2, 6]. The basic idea is, to filter
items by their attributes (e.g. shoes by size and color). If the
items that are supposed to be explored can be classified by
certain characteristic features, faceted browsing is a suitable
way of narrowing alternatives. This is especially useful, if
the user does not look for a particular item, but for alterna-
tives meeting certain requirements.

Based on the facet theory [8], the information space is par-
titioned using conceptual dimensions of the data. Faceted

SEMAIS 2010.

browsing is used to narrow the search space gradually by
means of so called facets, until the user finds what he or she
is looking for. This theoretical concept has been adopted
to the semantic web scenarios in the last years: There have
been various approaches of browsing semantic datasets mod-
eled in OWL or RDF [3, 4, 7, 10] by using facets.

Each facet is able to filter the relevant items in a different
way [5]. An important advantage of facets is the flexible
exploration of the data space from various entry points re-
flecting the features of the items. The user does not have
to know the underlying structure or the objects itself. In-
stead, he uses the navigation structure automatically gener-
ated from the objects and is able to narrow the search space
until he finds what he is looking for. As a convenient side
effect, the user implicitly learns about the items’ features,
which might help him to find them even more efficiently in
the future.

In order to classify objects, we need some kind of metadata
about them. Usually, the objects features are used for that
purpose. We want to illustrate this technique by using the ex-
ample of an electronic product catalog for books, cds, dvds,
and other items. Each of these products can be described in
a certain manner: A book has specific features like “title”,
“author”, “publisher”, “year of publication” and more. In
this fashion, other products can be classified as well: Dvds
by using actors, directors, and so on. These features then can
be grouped to categories like “author”, “title”, “publisher”,
etc., which are used as facets. The user can use an arbitrary
facet as the entry point for the navigation. After he selects
a certain facet, for instance “author”, all possible values are
listed for filtering the items. In this case, all authors of all
books would be displayed.

DATA SET
We implemented a faceted navigation structure on top of a
predefined set of semantic data. In this case, we set up a
virtual (fictitious) web portal for shopping and entertainment
purposes, in which the user can browse information about
more than 500 different articles, including (but not limited
to):

• Books, DVDs, Videogames, and CDs

• Actors, Artists, and Authors

• Clubs and Pubs

1



• Concerts and Sport-Events

We entitled the web portal “Discovr” and Figure 1 shows a
screenshot of it.

Figure 1. The Discovr Web Portal including a faceted navigation struc-
ture on the left. The center area shows a selection of items that meet
the current exploration criteria.

All information about the items in Discovr are encoded in
RDF models. Listing 1 shows a small example of how the
data is modeled. They do not have to provide further infor-
mation for the navigation widgets; just a semantic descrip-
tion of the data and how the items are related to each other.

<DVD r d f : a b o u t ="# d v d _ b i g _ f i s h ">

< r d f s : l a b e l
r d f : d a t a t y p e ="&xsd ; s t r i n g ">
Big Fish < / r d f s : l a b e l >

< g e n r e
r d f : r e s o u r c e ="# f a n t a s y " / >

< p a r t i c i p a n t
r d f : r e s o u r c e ="# ewan_mcgregor " / >

< p a r t i c i p a n t
r d f : r e s o u r c e ="# s t e v e _ b u s c e m i " / >

< produced_by
r d f : r e s o u r c e ="# t i m _ b u r t o n " / >

</DVD

Listing 1. Data is encoded in RDF models

These models are handcrafted, but in principle it is possible
to use existing RDF Data Sets or SPARQL-Endpoints like
http://www.dbpedia.org1. In the next section, we

1We used our own data set, because we thought that sources like
dbPedia might contain to many items for a controlled experiment.

explain how we implemented a mechanism to automatically
generate a faceted navigation structure on models like this.

NAVIGATION WIDGET GENERATION
In the previous section, we mentioned that one advantage
of faceted browsing is, that it supports multiple entry points
for navigation. To illustrate the facet creation process, we
assume that the user is looking for a particular DVD. So we
use “DVD”as the entry point.

As all items in our database are semantically structured, we
can use SPARQL queries to select a certain subset of them.
SPARQL is a SQL-like query language that can be used
to filter OWL or RDF data by semantic queries. Listing
2 shows a simple example how to select all items that are
DVDs. A query like this would be triggered to start the facet
creation process.

SELECT DISTINCT ? i t em
WHERE {

? i t em r d f : t y p e domain :DVD .
}

Listing 2. SPARQL query for selecting all DVDs

The result of the listing would be a list of all DVDs. From
an architectural point of view, it looks like illustrated in Fig-
ure 2. The client clicks on a certain button that triggers
a first request. In this case, he wants to receive all items
that have “DVD” as the type. The request is encoded in
SPARQL by the server application behind the web portal and
this SPARQL request is applied to the semantic data set. The
result of the query, in return, is delivered to the browser. In
this case, a list of all DVDs.

Browser Server

Request items

RDF Data

Query for
suitable items

Query
Solution

List of all
suitable items

including facets

Figure 2. A basic request for certain items. The browser request is
translated into a SPARQL query. For instance a query to retrieve all
items of a certain type (DVD). The query solution, in return, is trans-
lated into appropriate HTML widgets by the server application. These
widgets are send to the browser.

Upon the query solution, the server automatically analyzes
the data and creates facets for further exploration. Figure 3
shows an example for facets that are automatically generated
based on a subset of all DVDs. This analyzation process
is relatively simple: All relations of all items returned by
the query are examined and grouped by type, for instance
“Producer”, “Participant”, etc. and a facet is created for each
group.

Of course, most real web shops would now produce a vast
amount of DVDs. This is a typical case where faceted brows-
ing makes sense to incrementally narrow the results. Now,

2

http://www.dbpedia.org


we can make use of the features that are encoded in the RDF
data set.

Figure 3. Facets for DVD browsing. This is an example for nominal
data. In this case, a selection box is a compatible navigation widget.
Facets for other datatypes follow.

In this example, the user can browse a collection of DVDs by
filtering by producer, genre, participating actors, etc. Upon
each click on a certain element in a facet, the selection is
narrowed. A typical workflow could look like this:

1. The user clicks on a (pre-defined) “Browse DVDs” But-
ton.

2. This triggers a request like the one shown in Figure 2.

3. A navigation structure like the one from Figure 3 is cre-
ated on the fly.

4. The user can filter the content by selecting one or more
options, in this case he selects Tim Burton as a producer.

5. The selection (Tim Burton) is encoded into a SPARQL-
query that is now used to narrow the selection. The pro-
cess is similar to step 2.

6. The original selection (all DVDs) is constrained to only
those items, which fulfill all conditions: They have to be
DVDs and they have to be produced by Tim Burton.

7. In a third step, the user could, for instance, select Ewan
McGregor as an actor that has to appear in the movie,
which is another constraint that is treated in the same pro-
cess as above.

At any step, the user can release a facet condition and the
selection is expanded. In this way, the user is able to explore
the item space in many different ways.

WIDGET DECORATION
The example illustrated in the previous section entirely used
nominal data, a form of categorical data where the order
of the categories is not significant [9]. The categories are,
for instance “Movies with Ewan McGregor”, “Movies with
Matt Damon”, and so on. A selection box like the one in
Figure 3 is a good form of representation. In our case, only
the top n values are displayed with the option to show the
other entries by using a “more”-button (or constraining the
option by using other facets).

Showing all possible alternatives, however, is not suitable in
case of ordinal or interval data. Figure 4 is an example for

an automatically generated facet based on dates. As dates
follow a certain order and can be restricted by intervals, a
navigation widget using a slider is a better approach to re-
strict the selection.

(a) The range is automatically set

(b) Applying date restrictions

Figure 4. An automatically generated facet for filtering by date. This
facet uses a slider instead of a selection box. Depending on the type of
data to be displayed, certain navigation widgets are more useful than
others.

In this case, the elements can be ordered in a linear way,
which makes it possible to use a slider to constrain the items
to a subset. So, it makes sense to choose a meaningful dis-
play widget depending on the type of data. Fortunately, we
can use SPARQL for this purpose. Using a query like the
one presented in Listing 3, we can automatically detect the
type of data to be created to select the appropriate widget as
a representation.

SELECT DISTINCT ? f a c e t T y p e ? f a c e t L a b e l
WHERE {

? i n d i v i d u a l r d f : t y p e ? t y p e ;
? f a c e t T y p e ? r e s t r i c t i o n .
? f a c e t T y p e r d f s : l a b e l ? f a c e t L a b e l .

}
ORDER BY ? f a c e t T y p e

Listing 3. Obtaining the type of data via generic SPARQL query

In 2, we used only one variable (?item). Now, we query the
data that we want to create a facet for, and use two variables:
?facetType and ?facetLabel. We use the label just for
sorting the elements within the facet. The facetType, on the
other hand, is the key for the widget selection process.

Now, all we have to do is create a mapping for the possible
types of facets to certain types of widgets. We retrieve the
type of data as a XML-Schema Datatype, like xsd:integer,
xsd:string, xsd:date, and so on. In our case, we mapped
string-data to a selection box and dates, for instance, to a
slider widget.

3



For that purpose, we make use of the Decorator design pat-
tern [1] illustrated in Figure 5 to automatically create a suit-
able navigation widget that is intuitive to use for that kind of
data. The Figure 5 illustrates the process of decorating the
facet.

Figure 5. Depending on the type of faced, a suitable navigation widget
is used to decorate the data. For that purpose, we make use of the
Decorator design pattern.

A FacetDecorator is assigned to each facet. This FacetDec-
orator “knows” how to display the facet content. This ap-
proach separates the content of the facet from its representa-
tion. By default, every facet can be displayed as a selection
box. But, if appropriate, other interaction widgets can be
used.

The facet representation for the browser is created by calling
the facet.getHTML() method. The facet delegates the call to
its decorator’s createHTML() method. This method returns
valid HTML code that can be displayed on the client to real-
ize a HTML facet.

SUMMARY
In this paper, we presented a generic method for automat-
ically generating faceted navigation widgets based on se-
mantic models to filter items by their characteristic features.
This approach is independent from the actual items to be
displayed and exploits the type of feature to automatically
create a widget that is suitable for the type of data. The
approach is generic and can be re-implemented for any sce-
nario in any type of application.

Our approach iteratively constraints the search space to a
subset of suitable items. After that, a compatible display
widget is selected to decorate the data. So, the process of
data retrieving and data display is divided into distinct pro-
cesses.

Both processes are independent of the underlying ontolog-
ical representation. The underlying source code can (and
has been) used for different scenarios without custom ad-
justments. But even, if a totally different kind of data model
is used, the concept itself can be adapted, because the basic
principles are independent from the languages used.

ACKNOWLEDGEMENTS
The research presented in this paper is part of the CON-
TICI project, in which the Universities of Duisburg-Essen,
Siegen, Hagen, and Aachen take part. CONTICI is funded
by the German Research Foundation (Deutsche Forschungs-
gemeinschaft).

The authors thank Werner Gaulke and Timm Linder for fruit-
ful discussions and implementation support.

REFERENCES
1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design patterns: Abstraction and reuse in
object-oriented designs. In Proceedings of the 7th
European Conference on Object-oriented
Programming (ECOOP ’93). Springer, 1993.

2. N. Gibbins, S. Harris, A. Dix, and M. C. Schraefel.
Applying mspace interfaces to the semantic web.
Electronics and Computer Science EPrint 8639,
University of Southampton, 2003.

3. P. Heim, J. Ziegler, and S. Lohmann. gfacet: A browser
for the web of data. In S. Auer, S. Dietzold,
S. Lohmann, and J. Ziegler, editors, Proceedings of the
International Workshop on Interacting with Multimedia
Content in the Social Semantic Web (IMC-SSW’08),
pages 49–58, 2008.

4. M. Hildebrand, J. R. van Ossenbruggen, and
L. Hardman. /facet: A browser for heterogeneous
semantic web repositories. In Proceedings of the 5th
International Semantic Web Conference (ISWC ’06),
pages 272–285. Springer, 2006.

5. E. Oren, R. Delbru, and S. Decker. Extended faceted
navigation for rdf data. In International Semantic Web
Conference, pages 559–572, 2006.

6. C. Plaisant, B. Shneiderman, K. Doan, and T. Bruns.
Interface and data architecture for query preview in
networked information systems. ACM Transactions on
Information Systems, 17(3):320–341, 1999.

7. D. Quan, D. Huynh, and D. R. Karger. Haystack: A
platform for authoring end user semantic web
applications. In Proc. 2nd International Semantic Web
Conference, 2003 (ICSW ’06), pages 738–753.
Springer, 2003.

8. S. R. Ranganathan. Elements of library classification.
Asia Publishing House, 1962.

9. S. S. Stevens. On the theory of scales of measurement.
Science, 193(2684):677–680, JUN 1946.

10. K.-P. Yee, K. Swearingen, K. Li, and M. Hearst.
Faceted metadata for image search and browsing. In
CHI ’03: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 401–408,
New York, NY, USA, 2003. ACM.

4


	Introduction
	Faceted Browsing
	Data Set
	Navigation Widget Generation
	Widget Decoration
	Summary
	Acknowledgements
	REFERENCES 

