
Context-adaptation based on Ontologies and Spreading Activation

Tim Hussein, Daniel Westheide, Jürgen Ziegler
University of Duisburg-Essen

Lotharstr. 65, 47057 Duisburg, Germany
{hussein,westheide,ziegler}@interactivesystems.info

Abstract
Ontologies and spreading activation are known
terms within the scope of information retrieval.
In this paper we introduce SPREADR, an inte-
grated adaptation mechanism for web applica-
tions that uses ontologies for representing the ap-
plication domain as well as context information
like location, user history and local time. Those
context factors can be modeled in an ontology
and be linked to certain domain nodes. In each
session a Spreading Activation Network is build
based on those ontologies and recognized con-
text factors or user actions can trigger an acti-
vation flow through this network. A node’s re-
sulting activation value then represents its im-
portance according to the current circumstances.
While identically in structure, the Spreading Ac-
tivation Networks are personalized by automati-
cally modifying link weights and activation lev-
els of nodes. As a result the system learns about
the user preferences and can adjust its adaptation
mechanism for future runs through implicit feed-
back.

1 Introduction
The increasing amount of information presented in current
web based applications often makes them difficult to use.
Finding the appropriate content within the flood of data can
be challenging and may cause a user to reject a web appli-
cation. Various approaches have been proposed to over-
come these problems by adaptation, each with its particu-
lar advantages and drawbacks. Roughly, two approaches
can be distinguished: Context-aware and self-adaptive sys-
tems. Context-aware systems adapt the content according
to the current circumstances, but usually have no learning
mechanism. Ideally a system should continuously observe
the user’s behavior in order to learn from his decisions
and thereby improve future adaptations. This is what self-
adaptation is about.

Like [Dey et al., 2004] we propose an integrated view
of context and domain information to contextually offer
the appropriate content. For this purpose we make use of
two concepts originally known within the scope of artifi-
cial intelligence and information retrieval: Ontologies and
spreading activation.

In Section 2 we present existing approaches that cover
context engineering and adaptation techniques. Subse-
quently, we illustrate our context engineering approach in
Section 3 and show a method to integrate contextual in-
formation into an existing domain ontology. We propose

a method for creating an integrated ontological model for
each user representing the current usage context. A mod-
ified spreading activation algorithm is then used to adjust
those networks according to the user interaction and to re-
fine his profile over time. Simultaneously, self-adaptation
is performed by adjusting the adaptation mechanism itself
due to implicit relevance feedback. This technique is ex-
plained in Section 4, followed by an outline of the system
architecture in Section 5 and a description of a prototypical
implementation and its evaluation in Section 6. We con-
clude the article in Section 7, summarizing our conclusions
and pointing out future directions for research.

2 Related work
Various authors such as [Middleton et al., 2004] pro-
posed that adaptation by continuous observation is desir-
able in order to learn from the user’s behaviour and the
circumstances under which this behaviour occurs. While
user modeling and recommendation techniques have been
the focus of research for a long time, there have been
few attempts that take contextual information into account
for purposes of personalization ([Herlocker and Konstan,
2001], [Adomavicius and Tuzhilin, 2001] and [Kovacs and
Ueno, 2006]). Current systems mostly concentrate on the
user’s transaction history, which is of course an important
factor for adaptation. Those systems are usually called user
adaptive. Within applications that are always used in the
same context, this is not a problem at all, but with increas-
ing complexity of web applications context becomes a sub-
stantial factor in terms of usability.

It can be assumed that there is always a contextual back-
ground for the user’s information and service needs. Most
of the time the circumstances have a crucial impact on our
decisions as we always act in different roles. Winter coats
might be interesting in November, but not in July. One
would only like to know about the cafeteria menu of the
day on working days. So a system should automatically
adapt itself to the particular context to present the user ”the
right thing at the right time in the right way” [Kappel et
al., 2003]. Those systems are not user adaptive but con-
text adaptive. Traditional context-aware scenarios focus
on single context factors like the user’s current location
[Chen and Kotz, 2000], for instance for presenting tourist
information [Cheverst et al., 2000]. [Henricksen and Indul-
ska, 2005] calls the field of context-aware computing ”im-
mature”. Though this is a hard judgement we agree that
context-adaptivity still has a long way to go. Especially
there is a lack of approaches that take the user history into
account as well as multidimensional context information.

Recent activities include the a CAPella system [Dey et



al., 2004] which can be ”trained” by the user to auto-
matically recognize certain events depending on the cur-
rent context via multi-modal sensing: Information obtained
from a microphone, a camera, RFID antennas and other de-
vices is being used and interpreted. As a result, a CAPella
for instance recognizes the start of a meeting and automat-
ically presents certain documents that have been used in a
similar context in the past. This interesting and promis-
ing approach is a good example for sensing and unifying
context information. However it strongly focusses on real-
world interaction and needs certain external equipment for
context sensing, which makes it not directly applicable for
the purpose of web engineering.

Collaborative Filtering techniques – well known from
the field of recommender systems – have some qualities
that make them a good choice for filtering semantically
untagged items. This approach is very popular, because
it leads to notable results especially in recommender sys-
tems and frees the web engineer from creating and main-
taining complex content tagging. Yet pure collaborative
filtering has some crucial disadvantages, too, like the ramp-
up-problem often referred to as explained in [Burke, 2002].
Combining collaborative filtering techniques with content
based mechanisms has been shown to be a feasible solu-
tion to the ramp-up-problem. In [Claypool et al., 1999]
and [Melville et al., 2002] different approaches are pre-
sented. However, these solutions are rather user centered
and do not adequately take the particular context into ac-
count. Nonetheless, collaborative filtering algorithms have
been proven to be a simple but effective instrument that can
be integrated into more sophisticated systems. We think
that there is a strong need for an integrated strategy that
considers as much context information as possible: The
current usage context in terms of situation-awareness as
well as the past interactions including the contexts for the
time being.

Ontologies have been proven to be a good choice for
knowledge representation. Having its roots in philoso-
phy, ontologies have become popular for computer sci-
ence since the 1990s [Neches et al., 1991]. Ontologies
can be used to represent manifold information in a human-
understandable and machine-readable format consisting of
entities, attributes, relationships and axioms [Guarino and
Giaretta, 1995]. Examples for using ontologies in recom-
mender systems can be found in [Middleton et al., 2004],
where Quickstep and Foxtrot are illustrated – two systems
that make use of ontologies to recommend scientific re-
search papers a particular user might be interested in. We
think that in a truly adaptive system the adaptation tech-
niques have to become part of an optimization process it-
self through learning mechanisms. So the challenge is to
close the gap between user adaptive and context adaptive
systems [Oppermann, 2005] and to provide in this sense
a holistic system with appropriate learning mechanisms.
In this paper we want to introduce SPREADR (Spreading
Activation Driven Reasoning) - a model-driven, user- and
context-adaptive solution for this problem.

3 Context engineering
Developing a web application with SPREADR implies the
creation of several models. A typical scenario is presented
in Section 6. The models that can be defined in SPREADR
for instance include a domain and a context model. Each
of these models plays a distinct role in building the content
presented to the user and is an ontology represented in the

Web Ontology Language (OWL) format.
Within an ontology, nodes are semantically related to

each other. As an extension of this basic mechanism, we
assign individual weights to the relations. The resulting
networks are identical in structure for each user, but the
weights of the links are individualized. Nodes in the on-
tology (concepts and instances) are treated in a similar way
by assigning activation values to them. A fact in reality
is valid for everyone, but it is more or less relevant for a
certain user. If one considers an item to be important it
receives a higher activation value. Thereby, we can create
individual weighted networks for each user to represent his
personal interests. Information regarding his current loca-
tion, device, local time etc. can be handled just as well: By
raising the activation of the corresponding nodes we can
represent an individual usage context and by individualiz-
ing the relation weights certain factors are more or less tied
to a certain concept for each user.

The domain model
Generally speaking, the purpose of the domain model is
to represent knowledge relevant to the respective applica-
tion as well as pieces of content or references to them, de-
pending on the type of content that is represented [Kaltz,
2006]. To represent relevant domain knowledge, the do-
main model contains classes and semantic relations be-
tween them. Instances of those classes are likewise part of
the domain model, linked to each other by appropriate re-
lations. A domain model should be created by domain ex-
perts without considering the context-adaptations that are
supposed to take place [Kaltz, 2006].

The context model
When building a model-driven context-aware web applica-
tion, it is not only necessary to model the domain, but also
the context. Here, context is “any information that can be
used to characterize the situation of entities (i.e. whether a
person, place or object) that are considered relevant to the
interaction between a user and an application, including the
user and the application themselves” [Dey, 2001].

Thus, the quality of a context-aware web application de-
pends on the relevance of the modeled context. In order to
reduce complexity, we distinguish between five categories
of context, as proposed by [Ziegler et al., 2005]:
• User and role: individual users or groups of users that

are defined according to their different roles.
• Task: task-oriented context, e.g. work assignments or

a user’s personal goals.
• Location: the user’s physical or virtual location (e.g.

internet vs. local area network).
• Time: e.g. the season, the weekday or the time of day.
• Device: The user’s device, e.g a PDA, a mobile phone

or a personal computer.
Each of the these context categories is modeled in an on-

tology containing all context factors the system is supposed
to be aware of. At runtime, contextual information is rec-
ognized (Section 5) and the respective context factors are
activated.

However, for the context to have an effect on the content
selection, it is also necessary to model appropriate context
relations. A context relation defines a link between a con-
text factor and an item from the domain model as well as
a relevance weight. This relevance weight is used to deter-
mine the general importance of specific domain items in a
given context.



c2

time ontology domain ontology

c1

d1 

d2

r1

context relation
0.5

context relation
0.7

d3

d4

d5

place ontology

r2 r4

r3

d6 

context relation
0.3

d7r5

Figure 1: Connecting context factors to the domain model

Usually, when modeling a context relation, it is the con-
text engineer’s task to define a relevance weight that re-
flects the importance of the relation as seen by the majority
of users. Therefore, profound knowledge about the target
group of the web application is required so as to satisfy
the needs of most of the users. Especially when building
web applications for a heterogeneous user group, this ap-
proach of defining static relevance weights that are valid for
all users is problematic. Therefore an adaptive system re-
quires appropriate learning mechanisms. We approach this
problem by automatically adjusting the weight of a context
relation for an individual user according to his interaction
with the system and thus deviate from the weight defined
in the context model (see Section 4).

4 Adaptation by spreading activation
In our system, activation is spread within the domain
model, starting with items that are related to currently ac-
tivated context factors. This way we can exploit exist-
ing relations within the domain and reduce complexity for
the context engineer. The concept of spreading activation
traces back to [Collins and Loftus, 1975]. Their model of
spreading activation networks was originally applied in the
fields of psycho linguistics and semantic priming [Ander-
son, 1983]. Later, the idea was adopted by computer sci-
entists: Spreading activation techniques have successfully
been used in several research areas in computer science,
most notably in information retrieval ([Cohen and Kjeld-
sen, 1987], [Crestani, 1997] and [Berger et al., 2004]). The
principles of spreading activation have also been used by
[Pirolli and Card, 1995] in their information foraging the-
ory. [Kovacs and Ueno, 2006] extend classical associative
spreading activation networks with ”link types” and ”con-
text nodes” to generate context-adaptive recommendations.
An interesting approach for using spreading activation to
explore transitive associations between users can be found
in [Huang et al., 2004], who use this strategy to avoid the
sparsity problem in collaborative filtering.

Several algorithms have been developed to implement
the concept of spreading activation. However, the general
idea is the same: At the beginning, one or more nodes are
activated. These are called initial nodes. From these initial
nodes, activation is propagated through the network. Once
triggered the so called pulse passes through adjacent nodes
– thereby amplifying them – until a certain termination con-
dition is met.

4.1 The branch-and-bound algorithm
Three algorithms often used for spreading activation are ex-
amined in [Huang et al., 2004]: Constrained leaky capac-
itor (originally proposed by [Anderson, 1983]), Hopfield

nets and Branch-and-bound. For performance reasons we
chose the branch-and-bound algorithm and our implemen-
tation of this algorithm is as follows:

Initialization: Before the actual execution of spreading
activation begins, the network must be initialized:

1. The weights for the links are set based on the user’s
individual context model. Moreover, in our approach,
the network is not necessarily in a blank state when a
spreading activation run starts. Therefore, initial ac-
tivation levels for each node in the network are set.
These are based on the resulting activation levels of
the previous run.

2. The initial nodes are activated with a certain value.
The activation received by the start nodes is added
to their previous state. Optionally the new activation
level is calculated by applying an activation function
to this sum.

3. The initial nodes are inserted into a priority queue or-
dered by descending activation.

Execution: After initialization, the following steps are
repeated until a defined termination condition is fulfilled or
the priority queue is empty. The termination condition can
be configured freely, but two pre-defined termination con-
ditions are provided: (1) A maximum of activated nodes is
reached, (2) a maximum of processed nodes is reached. A
processed node is a node that has itself propagated activa-
tion to adjacent nodes.

1. The node with the highest weight is removed from the
queue.

2. The activation of that node is passed on to all adja-
cent nodes, if this is not prevented by some restriction
imposed on the spreading of activation. If a node j
receives activation from an adjacent node i, a new ac-
tivation level is computed for j.

Aj(t + 1) = Aj(t) + Oi(t)× wij × a

where Aj(t) is the previous activation of j, Oi(t) is
the output activation of i at the time t, wij is the
weight of the relation between i and j and a is an at-
tenuation factor. The output activation of a node is the
activation it has received. An arbitrary function can be
used to keep the values in a predefined range.

3. The adjacent nodes that have received activation are
inserted into the priority queue unless they have al-
ready been marked as processed.

4. The node that passed on its activation to the neighbor-
ing nodes is marked as processed.

Our spreading activation mechanism provides several
parameters that allow the context engineer to modify its
behavior, depending on the desired results and the domain.
In order to prevent activation from spreading through the
whole network and eventually activating every single node,
we make use of constrained spreading activation: Depend-
ing on the concept type, the outgoing edges, the path-
distance between nodes the spreading activation process
can be influenced. Details about those constraints can be
found in [Cohen and Kjeldsen, 1987] and [Rocha et al.,
2004]. Additionally, the attenuation factor used in the in-
put function can be configured and reverberation can be



prevented. This means that a node j must not propagate
activation to a node i if node j has itself been activated by
node i before in the same run. Finally, our spreading ac-
tivation mechanism allows the adjustment of relation type
weights. A relation type weight is used for each relation for
which no individual weight has been set in the initialization
phase of the algorithm.

4.2 Context reasoning

When a new session starts, a user specific Spreading Acti-
vation network is being created from the various models. In
its structure and semantics those networks are the same for
each user. It is individualized by adding numerical values
to it: Each node receives a specific activation that repre-
sents the importance of that domain item for the respec-
tive user. In addition to their semantics, the relations also
receive weights for the individual user. If a relation r be-
tween two nodes i and j has a high value this means that
the relation is very important for the user. For other users
the same relation r may be completely irrelevant.

At the beginning, each node has an initial activation
value of 0. Upon a request by a user, the requested content
node and the sensed context factors are being used as ini-
tial nodes for the spreading activation process. As a result
certain concepts and instances that seem to be important in
this particular context can be used for adaptation effects.
Furthermore the resulting values are being saved and can
be considered for future adaptations - some of them only
within the current session, some permanently. Indeed, it is
neither appropriate nor does it reflect reality to let the acti-
vation rise monotonously during the entire period of usage.
Because of this, we implemented a slight decay of all node
weights that takes place at frequent intervals. Hence, a cer-
tain weight for a domain item can only be maintained if it
is regularly activated – either directly if the user clicks on
the appropriate navigation node, or indirectly by spreading
activation from a related domain item.

4.3 Learning by adjusting the relation weights

As already mentioned, our system does not only manage
separate node weights for each user, but also separate rela-
tion weights. A relation weight represents the importance
that the relation has for an individual user. Initially, the rel-
evance weight of a context relation is defined globally in
the context model. Thus, it is the same for each user first.
Adjusting the weight of a relation within the domain model
is similar to the adjustment of context relation weights.
When a spreading activation run is performed, each node
stores the path to the initial node whose propagation led
to its activation – together with information on how much
activation it has received via that path. If within a certain
amount of requests the user navigates to a domain item i
that has previously been activated in a spreading activation
run via the path p, the importance of the relations that form
the path p are increased. Relation weight adjustments are
stored permanently, so that the system learns what is im-
portant in a specific usage context. If the user does not
”confirm” the activation path within a certain period of time
by requesting the recommended node, the relation is con-
sidered to be not very important and therefore decreased
in weight. This idea was inspired by Hebbian Learning
[Hebb, 1949]. By doing so the spreading activation pro-
cess itself becomes part of the adaptation process.

5 Architecture
Whenever the system recognizes certain context factors,
activation energy is injected into the context model in order
to activate relevant domain items. Based on this informa-
tion, adaptations of content or navigation can be initiated.
The framework focuses on context recognition, context rea-
soning, learning about context, and providing services for
adaptation to context. The actual generation of the web
pages that are sent to the browsers is not part of it, which al-
lows for a maximum freedom concerning the technologies
for generating pages. Generally, most of the main compo-
nents of SPREADR can be assigned to either of two tasks:
context processing or response generation. However, for
some of the components, such a clear-cut classification is
not possible because they are involved in both tasks. Figure
5 shows the main components as well as the dependencies
between them.

<< component >>
ContextModelManager

<< component >>
ContextLearner

<< component >>
ContextProcessor

<< component >>
DomainUriResolver

<< component >>
AppModelManager

<< component >>
ContextStateManager

<< component >>
ContextReasoner

<< component >>
ContextExtractor

<< component >>
ContentRetriever

<< component >>
AdaptationEngine

cd: spreadr

Figure 2: Components in SPREADR

5.1 Context processing components
Context Processor
The ContextProcessor is responsible for initiating and con-
trolling the context processing of a request. Upon each re-
quest to the server, the ContextProcessor must be provided
with a HttpServletRequest object that represents the cur-
rent request in order to start the context extraction, reason-
ing, and learning process. Therefore, it contains references
to the ContextExtractor, the ContextReasoner, and the Con-
textLearner component (if learning of context models is de-
sired).

Context Extractor
The first component called by the ContextProcessor upon
a new request is the ContextExtractor. Its task is to extract
context information from the data that is available in an
HttpServletRequest object and to return the extracted con-
text information as a collection of context factors, each of
them assigned to one of the context categories described in
Section 3 and has an activation level in the interval [0, 1]. In
its default implementation, the ContextExtractor delegates
its task to sub-components, each of them being responsible
for extracting context factors of a single category. Once the
ContextProcessor has received the extracted context factors
from the ContextExtractor, it hands them over to the Con-
textReasoner.



Context Reasoner
This component is responsible for activating additional
context factors, based on past context states and on the
extracted context factors, for instance by combining con-
text factors from several categories in order to infer addi-
tional context factors. However, although this can easily be
changed by implementing an alternative ContextReasoner,
the core reasoning is achieved by spreading activation in
the context model. Access to the context model is provided
by the ContextModelManager (see below). The spreading-
activation based reasoning is performed by a corresponding
sub-component. First and foremost, it is used to activate
context factors representing domain items that are relevant
in the current context. When the ContextReasoner has fin-
ished, it passes the context state, an artifact of its work
that consists of all currently active context factors, to the
ContextStateManager. Moreover, it tells the ContextMod-
elManager to save the context model.

Context State Manager
The ContextStateManager manages past and present con-
text states for an individual user and enables other compo-
nents to access this information.

Context Learner
After context reasoning, context learning can optionally
be initiated by the ContextProcessor. To do so, the latter
calls the ContextLearner which accesses a context model
from the ContextModelManager, modifies the model in
some way and asks the ContextModelManager to save the
changed model.

Context Model Manager
It is the ContextModelManager, that is responsible for
managing the context model for a specific user. It provides
access to the context model and, if asked to do so, per-
sists the context model, so that potential changes that have
been made to it by the Context Learner are not lost after the
session has terminated. While this component is intended
to provide user-specific context models, alternative imple-
mentations might provide the same model to all users. This
is reasonable if no Context Learner is used.

5.2 Response generation components
While the functionality of SPREADR does not comprise
the actual page generation, it provides some components
that are useful for accessing the content to be rendered:
the DomainUriResolver, the AppModelManager, the Con-
tentRetriever, and the AdaptationEngine.

Domain URI Resolver
The DomainUriResolver is a utility component, that re-
solves the requested URI to an item or concept in the do-
main ontology. When using a MVC framework, a Con-
troller can use this information to provide the view with
the information that is necessary to render the requested
domain item. The DomainUriResolver is also used by the
ContextExtractor to extract the appropriate context factor
in the context category application.

Application Model Manager
Access to the ontologies is provided by the AppModelMan-
ager.

Content Retriever
The ContentRetriever is a special component because im-
plementations of it must be developed for the individual

web application. It can then be called to get the informa-
tion that is to be displayed, encapsulated in an instance of
a class adhering to the JavaBean specification.

Adaptation Engine
It is the task of the AdaptationEngine to provide content
and services to components that are responsible for page
generation. Currently, its sole functionality is to provide
items that are relevant in the current context.

6 Experiences
In order to test the effectiveness of our adaptation mech-
anism and to clarify our methodology, we developed an
adaptive music portal. This is a typical scenario where
adapting to the user and his current context is often con-
sidered to make sense. People often have a small number
of favourite artists but are not aware of other artists they
might like, do not notice dates of interesting concerts tak-
ing place close to their current location, or that the music
they are interested in is dependent on context such as time.
In our scenario, we target these problems by adapting the
content of the portal to the current usage context, i.e. to
the user profile enriched with activations of items by the
current context. Our music portal provides album reviews,
artist biographies, concert information and several kinds of
additional information about events and items.

For evaluation purposes we created 4 typical usage sce-
narios that had to be simulated by various users. Each of
the scenarios contained a part with context learning enabled
(via relation weight adjustments) and a part without. The
users did not know about those technical details and had
to rate the quality of the adaptation effects. Those effects
have been rated considerably better when context learning
was enabled, because in that case they were able to find
interesting items with significantly less clicks.

7 Conclusions
We introduced a novel approach to determine the most im-
portant elements of a given ontology with regard to current
context. On this basis adaptation activities can automati-
cally be performed. We call this a holistic spreading ac-
tivation technique, because it relies entirely on the results
of the spreading activation processes. Furthermore context
relations are fully integrated into the propagation process
and thereby affect the adaptation activities. Our goal was to
design an adaptation mechanism for context-adaptive web
applications including appropriate learning mechanisms to
close the gap between context-awareness and self adapta-
tion. [Perkowitz and Etzioni, 2000] call those web sites
adaptive, which “automatically improve their organization
and presentation by learning from visitor access patterns”.
The proposed system meets this requirements. As for fu-
ture directions, our short-term goal is to cluster user pro-
files and thus allow cross-network-propagation of activity
action, whereas the design of truly information-centered
applications with context-adaptive interfaces may be a pos-
sible long-term goal.

References
[Adomavicius and Tuzhilin, 2001] Gediminas Adomavi-

cius and Alexander Tuzhilin. Multidimensional recom-
mender systems: A data warehousing approach. Lecture
Notes in Computer Science, 2232, 2001.



[Anderson, 1983] John R. Anderson. A spreading activa-
tion theory of memory. Journal of Verbal Learning and
Verbal Behavior, 22:261–295, 1983.

[Berger et al., 2004] Helmut Berger, Michael Dittenbach,
and Dieter Merkl. An Adaptive Information Retrieval
System Based on Associative Networks, volume 31
of Conferences in Research and Practice in Informa-
tion Technology. ACS, Dunedin, New Zealand, 2004.
First Asia-Pacific Conference on Conceptual Modelling
(APCCM2004).

[Burke, 2002] Robin D. Burke. Hybrid recommender sys-
tems: Survey and experiments. User Model. User-
Adapt. Interact, 12(4):331–370, 2002.

[Chen and Kotz, 2000] Guanling Chen and David Kotz.
A survey of context-aware mobile computing research.
Technical Report TR2000-381, Dartmouth College,
2000.

[Cheverst et al., 2000] Keith Cheverst, Nigel Davies,
Keith Mitchell, and Adrian Friday. Experiences of de-
veloping and deploying a context-aware tourist guide:
The GUIDE project. In Proceedings of the 6th An-
nual International Conference on Mobile Computing
and Networking (MOBICOM-00), pages 20–31, N. Y.,
August 6–11 2000. ACM Press.

[Claypool et al., 1999] M. Claypool, A. Gokhale, T. Mi-
randa, P. Murnikov, D. Netes, and M. Sartin. Combin-
ing content-based and collaborative filters in an online
newspaper, 1999.

[Cohen and Kjeldsen, 1987] Paul R. Cohen and Rick
Kjeldsen. Information retrieval by constrained spread-
ing activation in semantic networks. Inf. Process. Man-
age, 23(4):255–268, 1987.

[Collins and Loftus, 1975] Allan M. Collins and Eliza-
beth F. Loftus. A spreading-activation theory of se-
mantic processing. Psychological Review, 82:407–425,
1975.

[Crestani, 1997] Fabio Crestani. Application of spreading
activation techniques in information retrieval. Artif. In-
tell. Rev, 11(6):453–482, 1997.

[Dey et al., 2004] Anind K. Dey, Raffay Hamid, Chris
Beckmann, Ian Li, and Daniel Hsu. a CAPpella: pro-
gramming by demonstration of context-aware appli-
cations. In Elizabeth Dykstra-Erickson and Manfred
Tscheligi, editors, Proceedings of the 2004 Conference
on Human Factors in Computing Systems, CHI 2004, Vi-
enna, Austria, April 24 - 29, 2004, pages 33–40. ACM,
2004.

[Dey, 2001] A. K. Dey. Understanding and using context.
Personal Ubiquitous Computing, 5(1):4–7, 2001.

[Guarino and Giaretta, 1995] N. Guarino and P. Giaretta.
Ontologies and knowledge bases: Towards a termino-
logical clarification. In N. J. I. Mars, editor, Towards
Very Large Knowledge Bases, pages 25–32. IOS Press,
Amsterdam, 1995.

[Hebb, 1949] Donald O. Hebb. The Organization of Be-
havior. John Wiley Sons, 1949.

[Henricksen and Indulska, 2005] Karen Henricksen and
Jadwiga Indulska. Personalising context-aware appli-
cations. In Robert Meersman et al., editor, On the Move
to Meaningful Internet Systems 2005: OTM 2005 Work-
shops, Agia Napa, Cyprus. Springer, 2005.

[Herlocker and Konstan, 2001] Jonathan L. Herlocker and
Joseph A. Konstan. Content-independent task-focused
recommendation. IEEE Internet Computing, 5(6):40–
47, 2001.

[Huang et al., 2004] Zan Huang, Hsinchun Chen, and
Daniel Zeng. Applying associative retrieval techniques
to alleviate the sparsity problem in collaborative fil-
tering. ACM Transactions on Information Systems,
22(1):116–142, 2004.

[Kaltz, 2006] Joachim Wolfgang Kaltz. An Engineering
Method for Adaptive, Context-aware Web Applications.
PhD thesis, Universitaet Duisburg-Essen, Campus Duis-
burg, 2006.

[Kappel et al., 2003] Gerti Kappel, Birgit Pröll, Werner
Retschitzegger, and Wieland Schwinger. Customisa-
tion for ubiquitous web applications a comparison of ap-
proaches. Int. J. Web Eng. Technol, 1(1):79–111, 2003.

[Kovacs and Ueno, 2006] Alexander I. Kovacs and Haruki
Ueno. Recommending in context: A spreading acti-
vation model that is independent of the type of recom-
mender system and its contents. In Vicent Wade, Helen
Ashman, and Barry Smyth, editors, Proceedings of the
AH2006. Springer, 2006.

[Melville et al., 2002] Prem Melville, Raymod J. Mooney,
and Ramadass Nagarajan. Content-boosted collabora-
tive filtering for improved recommendations. In Eigh-
teenth national conference on Artificial intelligence,
pages 187–192, Menlo Park, CA, USA, 2002. Ameri-
can Association for Artificial Intelligence.

[Middleton et al., 2004] Stuart Middleton, Nigel Shad-
bolt, and David De Roure. Ontological user profiling in
recommender systems. ACM Trans. Inf. Syst., 22(1):54–
88, 2004.

[Neches et al., 1991] R. Neches, R. Fikes, T. Finin, T. Gru-
ber, R. Patil, T. Senator, and W. R. Swartout. En-
abling technology for knowledge sharing. AI Magazine,
12(3):16–36, 1991.

[Oppermann, 2005] Reinhard Oppermann. From user-
adaptive to context-adaptive information systems. iCom,
Zeitschrift für interaktive und kooperative Medien,
3/2005:4–14, 2005.

[Perkowitz and Etzioni, 2000] Mike Perkowitz and Oren
Etzioni. Towards adaptive web sites: Conceptual frame-
work and case study. Artifical Intelligence, 118(1-
2):245–275, 2000.

[Pirolli and Card, 1995] Peter Pirolli and Stuart K. Card.
Information foraging in information access environ-
ments. In CHI, pages 51–58, 1995.

[Rocha et al., 2004] Cristiano Rocha, Daniel Schwabe,
and Marcus Poggi de Aragão. A hybrid approach for
searching in the semantic web. In WWW, pages 374–
383, 2004.

[Ziegler et al., 2005] Jürgen Ziegler, Steffen Lohmann,
and Joachim Wolfgang Kaltz. Kontextmodellierung für
adaptive webbasierte systeme. In C. Stary, editor, Men-
sch & Computer 2005: Kunst und Wissenschaft. Olden-
bourg Verlag, München, 2005.


