
Handling the Complexity of RDF Data:

Combining List and Graph Visualization

Philipp Heim and Jürgen Ziegler
(University of Duisburg-Essen, Germany
philipp.heim, juergen.ziegler@uni-due.de)

Abstract: An increasing amount of valuable information is stored in RDF. In order
to let humans access this information, providing an appropriate visualization of RDF
data is an important challenge. In this paper, we present a new approach, combining
list and a graph visualization to counterbalance the respective disadvantages of both
representation paradigms to better handle the complexity of both the size and the
structure of RDF data.

Key Words: RDF Visualization, Graph Visualization, Interaction, Data Exploration

Category: H.3.3, H.5.2, M.7

1 Introduction

Web content is typically distributed. With the use of the Resource Description
Framework (RDF), the W3C standard to model information for the Semantic
Web, web content can be annotated semantically and thus can be exchanged and
integrated in an certain and efficient way. This happens by classifying the infor-
mation contained in web content to certain classes of an ontology and thereby
gives the content a well defined meaning.

In order to allow humans to access the meaning that has been given to
certain web content and thereby facilitate their understanding of this content,
appropriate techniques to visualize RDF data are needed. Since RDF data is
organized as a graph, using a graph to present that data to the user seems
to be an appropriate approach. The explicit visualization of the RDF graph,
the data as it is stored in the computer, guarantees that all the information is
displayed, however, it does not guarantee that all the displayed information can
be understood by the user.

The problem with directly presenting the RDF graph is that graph visualiza-
tion does not scale well to large datasets [Frasincar et al 2006]. Their visualiza-
tion tends to result in a complex graph, which is hardly manageable or under-
standable by the user [schraefel and Karger 2006]. Additionally, since RDF data
is often highly interconnected [Angles and Gutierrez 2005], visualizing all these
connections by edges will cause a lot of edge crossings and hence will further
hinder the understanding of the information contained in the RDF graph.

List visualizations by contrast are good in dealing with large datasets. Due
to their clear and linear way to display data in combination with sophisticated



scrolling and paging techniques as they are implemented in many well known ap-
plications, users become empowered to handle large datasets properly. However,
lists have very limited abilities in showing multi-dimensional information.

On this account we proclaim a combined approach using both, a list to display
large datasets in a clear way and a graph to show multi-dimensional information
in its structural complexity. The use of both representation paradigms coun-
terbalances their respective disadvantages and thereby facilitates an enhanced
understanding of the information contained in RDF data.

2 Related Work

Making semantic information represented in RDF accessible for users has been
addressed by several projects.

Graph-based tools such as RDF Gravity [Goyal and Westenthaler 2004], Isa-
Viz [IsaViz 2006], Welkin [Welkin 2005] and the Paged Graph Visualization
[Deligiannidis et al. 2007], display RDF data as node-link diagrams, explicitly
showing its internal representation structure.

Other tools like Longwell [Longwell 2005], Haystack [Quan et al. 2003], m-
Space [schraefel et al. 2005] and Tabulator [Berners-Lee et al. 2006] use lists in
combination with the faceted browsing paradigm [Yee et al 2003] to visualize
and browse arbitrarily complex RDF datasets, allowing the end users to alter
their search criteria at each step of the exploration.

A mixed approach, however, allowing the user to switch from one visualiza-
tion to the other in a smooth transition, has to our best knowledge not been
addressed so far. So with the RDF-ListGraph we present a first attempt in com-
bining a list with a graph to improve the accessibility of RDF data.

3 RDF-ListGraph

The RDF-ListGraph is a tool to visualize RDF data as both a list and a graph.
The user can switch between list and graph visualization in order to look at the
same data in differing ways. The change from one visualization to the other hap-
pens in a smooth transition to not confuse the user and thereby rather hinder an
understanding of the RDF data than to support it. To provide a smooth tran-
sition we use Adobe Flex, an open source framework for building rich Internet
applications, using Flash’s animation power. The RDF data to be viewed in the
RDF-ListGraph is requested by the use of SPARQL, a protocol and RDF query
language, allowing to access RDF data from every location with Internet access.
The accessed data can then be visualized in any browser with Flash plug-in.

The RDF-ListGraph is developed within the context of the research project
Softwiki [Softwiki 2008] that aims to support the collaborative requirement en-
gineering process of large and spatially distributed groups of stakeholders. The



stakeholders are enabled to semantically enrich requirements and integrate them
in an ontology where central classes like requirement, description and keyword
are defined. Classified that way, the requirements are stored in RDF, leading to
large RDF datasets. These datasets can be visualized by the RDF-ListGraph
to analyze the complexity of the semantically enriched requirements and thus
discover interesting relationships between them.

The analysis process with the RDF-ListGraph starts with the definition of
the class of instances the user is interested in, for example the class of all require-
ments. Thereafter, all the existing requirements get visualized as a list, which
can be controlled by filters. Having found a set of interesting instances, the user
has the opportunity to change the representation paradigm and switch smoothly
animated to a graph-based visualization. Since the structural complexity of RDF
data can often not be understood in the direct visualization of the RDF graph, a
specific graph transformation is applied to enhance users’ understanding of this
complexity. So the RDF-ListGraph in comparison to existing RDF visualization
tools provides the three following key advantages:

1. The combination of list and graph visualization to handle the complexity of
RDF data in both size and structure.

2. A smoothly animated transition between both representation paradigms to
make the change clear and traceable.

3. A specific graph transformation to directly show similarities between certain
instances.

4 Using a List to Handle Large Datasets

Since RDF data is often large in size, the RDF-ListGraph has to be capable
in dealing with large datasets. Therefore the RDF-ListGraph provides a list
visualization together with different kinds of filters to iteratively narrow down a
possibly large set of RDF data in order to end up with a small set of instances,
which is of special interest to the user.

In order to control what information to display, the user can apply the follow-
ing three different filters: The class filter, the property filter and the display filter.
With the class filter the user can narrow down the search space to instances of
a certain class, for example requirements (see figure 1, A). The number of in-
stances can then be reduced by the property filter to only instances with specific
properties, for example to requirements with keywords ”spam” or ”junk” (see
figure 1, B). Additionally, the display filter can be used to show or hide certain
properties of the found instances and to highlight properties of special interest
by different colors, for example the properties ”Keyword spam” and ”Keyword
junk” (see figure 1, C).



A

B

C

D

Figure 1: The list visualization shows information in a clear and linear way.

Each modification of the filters leads to an update of the list, allowing the
user to instantly notice the effects caused by the modification. Because a list
is a well known representation paradigm and frequent changes of the displayed
information do not result in new layouts, but stay in the same linear structure,
the user do not get lost while narrow down the list by filters. The possibility to
order the list by certain properties can additionally help to force the list in a clear
structure to better keep track of changes and updates. To see the instances in
more detail, for example to see the description of a requirement (see figure 1, D),
the user can open and close them via a dropdown method. It is possible to open
several instances simultaneously and hence become able to better compare them
in detail. So the list acts as a multi-accordion where instances can be opened
and closed user-defined and independently.

Until this point the list is suitable, but lacks capability to present a small set
of instances in all its structural complexity. This is mainly the case, because the
ability of lists to linearly arrange information has the serious disadvantage that
it is not suitable to show non-linear information in all its multiplicity. Only one
dimension can be represented properly by a list at one time. So in which way the
instances in the set interrelate according to their properties cannot be properly
shown by list visualization. In this specific situation, graph visualization seems
to be the better visualization paradigm.



5 Using a Graph to Handle Structural Complexity

In order to understand the information contained in RDF data, it is important
to understand how it is structured. A closer inspection of the data structure can
unveil patterns such as dependencies between certain properties. The knowledge
of possible dependencies can help to better interpret and understand certain
aspects of the information. Since RDF data commonly consists of instances that
share multiple properties, their possible dependencies are multi-dimensional. In
order to allow the user to discover multi-dimensional dependencies in RDF data,
we use a graph visualization to present multi-dimensional data in an appropriate
way. The standard RDF graph, however, does not suit the task of discovering
dependencies, because equal properties are not directly visualized. To make it
easy for the user to spot equal properties and hence facilitate the discovery of
dependencies, we transform the standard RDF graph into a graph where shared
properties are directly visible.

5.1 Graph Transformation

In the transformed graph, only properties shared by at least two instances are
visualized. The advantage of this approach is to help users to focus on those
properties shared by several instances.

R3

R2

R1

junk

spam

delete R3R2R1

KW:spam KW:spam

KW:junk

KW:delete

KW:junk

KW:deleteKW: KW:KW:

KW:KW:
KW:

KW:KW:

KW:

Figure 2: The RDF graph is transformed to better discover similarities

A second advantage is that equal properties are directly represented by la-
beled edges what makes similarities directly visible for the user. In the visual-
ization of the standard RDF graph by contrast, equal properties are not directly
visible and hence are hard to spot for the user. As can be seen in figure 2,
the requirements R1, R2 and R3 in the transformed graph are connected by
labeled edges according to their three equal properties KW:spam, KW:junk and
KW:delete, making it easy to recognize similarities between requirements.



A third advantage of the transformed graph is a fewer number of crossing
edges. Where in the RDF graph instances with the same property are connected
to one and the same node (see figure 2, left), in the transformed graph they are
arranged in a row (see figure 2, right). Having several instances connected to
one and the same node brings up the question of shortage of space around this
node. Since the space around a node is limited, the more instances are connected
to the same node, the more they get clustered. With several instances sharing
several properties, their clustering results in crossing edges, as it is the case in
figure 2, on the left side. The transformed graph reduces the clustering by using
a row to arrange instances with the same property instead of using a circle as it
is in the RDF graph and thus avoid edge crossings (see figure 2, right).

5.2 Graph Visualization

In the graph visualization of the RDF-ListGraph, instances are represented by
nodes and connected by labeled edges. To layout the graph in an aesthetically
pleasing way, we use a force directed algorithm [Fruchterman and Reingold 1991]
to position the nodes of the graph so that all the edges are of more or less equal
length and there are as few crossing edges as possible (figure 3).

E

F

Figure 3: The graph visualization shows interrelations directly.



Since even in simple settings the problem of automatic label placement turns
out to be NP-hard [Christensen et al 1995], we treat the labels as additional
nodes to get the placement solved along with the computation of the force di-
rected layout. Treating a label as a node divides the connections between two
instances into two edges with the label as articulated joint in between (see fig-
ure 3, E). With a connection consisting of two edges and an articulated joint in
between, the shape of an edge gets more flexible and hence avoids overlapping
when two instances are connected by more than one edge.

If two instances share a property, they get connected by an edge, which
is labeled by that property. If two instances share several properties, they get
connected by several edges and therefore get positioned close to each other in
the force directed layout of the graph (see figure 3, E). Every property can be
highlighted by a specific color, making it easy for the user to see how instances
interrelate by certain properties. If an instance interrelates with other instances
by more than one property that is highlighted by the user, it gets surrounded
by as many colored rings as there are similarities with this instance (see figure
3, F). That way, instances with certain properties are marked by certain colors
and thus are easy to find in the graph.

6 Conclusions and Future Work

In this paper we introduced the RDF-ListGraph, a tool that offers the user both,
a list to handle large datasets and a graph to show the structure of a selected
set of instances in all its complexity. To not confuse the user when switching
the representation paradigm, the change from a list to a graph and vice versa
is smoothly animated in Flash. That way the RDF-ListGraph counterbalances
the respective disadvantages of both representation paradigms and let the user
handle the complexity of RDF data in both, size and structure.

We also introduced a specific graph transformation that makes similarities
directly visible and thereby further facilitate the understanding of the interrela-
tions within the set of instances. Finally, the class, the property and the display
filter, allow the user to narrow down large datasets in order to focus on infor-
mation of special interest.

In our future work we will evaluate our approach by user studies and work
on a further integration of the two paradigms to reduce the cost of changing
between list and graph visualization. Soften the strict separation between both
visualization states seems therefore to be a promising approach. So, offering
several stable states in-between list and graph visualization could improve the
combination of both representation paradigms and hence further facilitate the
understanding of the information contained in RDF data.



References

[Angles and Gutierrez 2005] Angles, R., Gutierrez, C.: “Querying RDF data from a
graph database perspective”; Proceedings of the 2nd European Semantic Web Con-
ference (ESWC), Greece (2005), 346-360.

[Berners-Lee et al. 2006] Berners-Lee, T. Chen, Y., Chilton, L., Connolly, D., Dha-
naraj, R., Hollenbach, J., Lerer, A., Sheets, D.: “Tabulator: Exploring and Analyzing
linked data on the Semantic Web”; Proceedings of the 3rd International Semantic
Web User Interaction Workshop (2006).

[Bizer er al. 2006] Bizer, C., Pietriga, E., Karger, D., Lee, R.: “Fresnel: A Browser-
Independent Presentation Vocabulary for RDF”; Proceedings of the 5th Interna-
tional Semantic Web Conference, LNCS 4273, Springer, Berlin.

[Christensen et al 1995] Christensen, J., Marks, J., Shieber, S.: “An empirical study
of algorithms for point-feature label placement”; ACM Transactions on Graphics
(1995), 203-232.

[Deligiannidis et al. 2007] Deligiannidis, L., Kochut, K., Sheth, A.: “RDF data explo-
ration and visualization”; Proceedings of the ACM first workshop on CyberInfras-
tructure, New York (2007), 39-46.

[Frasincar et al 2006] Frasincar, F., Telea, A., Houben, G.-J.: “Adapting graph visu-
alization techniques for the visualization of RDF data”; Visualizing the Semantic
Web (2006), 154-171.

[Fruchterman and Reingold 1991] Fruchterman, T., Reingold, E.: “Graph drawing by
force-directed placement”; Softw. Pract. Exper., John Wiley & Sons, New York,
1129-1164.

[Goyal and Westenthaler 2004] Goyal, S. and Westenthaler, R.: RDF Grav-
ity; Salzburg Research (2004). http://semweb.salzburgresearch.at/apps/
rdf-gravity/.

[IsaViz 2006] IsaViz: A Visual Authoring Tool for RDF (2001-2006). http://www.w3.
org/2001/11/IsaViz/.

[Longwell 2005] SIMILE: Longwell RDF Browser (2003-2005). http://simile.mit.
edu/longwell/.

[Quan et al. 2003] Quan, D., Huynh, D., Karger, D.: “Haystack: A Platform for Au-
thoring End User Semantic Web Applications”; Proceedings of the 2nd International
Semantic Web Conference (2003), 738-753.

[schraefel and Karger 2006] schraefel, m. c. and Karger, D: “The Pathetic Fallacy of
RDF”; International Workshop on the Semantic Web and User Interaction (2006).

[schraefel et al. 2005] schraefel, m.c., Smith, D., Owens, A., Russell, A., Harris, C.,
Wilson, M.: “The evolving mspace platform: leveraging the semantic web on the
trail of the memex”; Proceedings of the sixteenth ACM conference on Hypertext
and hypermedia, New York (2005), 174-183.

[Softwiki 2008] Softwiki (2006-2009). http://www.softwiki.de.
[Welkin 2005] SIMILE: Welkin (2004-2005). http://simile.mit.edu/welkin/.
[Yee et al 2003] Yee, K.-P., Swearingen, K., Li, K., Hearst, M.: “Faceted metadata for

image search and browsing”; Proceedings of the ACM Conference on Computer-
Human Interaction (2003).


