
Model-Driven Dynamic Generation of

Context-Adaptive Web User Interfaces

Steffen Lohmann, J. Wolfgang Kaltz, and Jürgen Ziegler

University of Duisburg-Essen,
Lotharstrasse 65, 47057 Duisburg, Germany,

{lohmann, kaltz, ziegler}@interactivesystems.info

Abstract. The systematic development of user interfaces that enhance
interaction quality by adapting to the context of use is a desirable, but
also highly challenging task. This paper examines to which extent contex-
tual knowledge can be systematically incorporated in the model-driven
dynamic generation of Web user interfaces that provide interaction for
operational features. Three parts of the generation process are distin-
guished: selection, parameterization, and presentation. A semantically
enriched service-oriented approach is presented that is based on the Cat-
walk framework for model interpretation and generation of adaptive,
context-aware Web applications. Automation possibilities are addressed
and an exemplary case study is presented.

Keywords. Context-aware Web User Interfaces, Web Service Integra-
tion, Ontology-based Modeling, Model Interpretation, Model-Driven User
Interface Generation, Parameterization, Semantically Enriched SOA.

1 Introduction

The systematic development of complex applications requires a significant effort
in modeling throughout the whole life cycle. A promising approach is to use these
models not only as design basis for subsequent manual implementation or for
semiautomatic generation of application code, but rather consider these models
as an inherent part of the system. Changes in the models are then directly visible
in the application (or in a prototype used for testing). We developed Catwalk,
a Web application framework that follows this design paradigm by interpreting
ontology-based models at run-time for dynamic generation of adaptive, context-
aware Web applications (cp. [6]).

Building upon this framework, we investigate in this paper how Web user
interfaces for operational features can be dynamically selected, generated, and
adapted according to the context of use with the motivation to enhance user
interaction and reach better usability. By operational features, we mean inter-
active application functionality that goes beyond hypertext navigation (cp. [1]).
By context, we understand the generic meaning of the term, including various
aspects such as the user’s profile, current task and goal, the location, time, and
device used. In [7], we give a formal definition of context for Web scenarios.

http://www.springeronline.com/3-540-69488-9
Steffen
Text Box
T. Kühne (Ed.): Models in Software Engineering, LNCS 4364, pp. 116–125, 2007.<c> Springer-Verlag Berlin Heidelberg 2007http://www.springeronline.com/3-540-69488-9

2

First, we provide some background information by discussing work related
to the modeling and generation of adaptive Web applications and by giving
an overview of the Catwalk architecture and the underlying ontology-based
modeling method.

2 Related Work

Several existing approaches that address the systematic development of Web ap-
plications (Web Engineering) use conceptual models to describe the application’s
domain. Further aspects such as the application’s navigational structure or pre-
sentation issues are defined on the basis of these conceptual models. Additional
modeling is required for the definition of adaptive system behavior.

The UML-based Web Engineering (UWE) approach [9] explicitly addresses
adaptivity issues in Web Engineering by providing extra user and adaptation
models. UML is used for modeling; the models are stored in XMI. The develop-
ment framework Apache Cocoon has been extended for the generation of appli-
cation code from the UWE models [10]. However, user and adaptation models
are not considered thus far by the code generation framework and the generated
Java classes and XSLT stylesheets cannot be executed directly, but need to be
manually completed first. Furthermore, UWE addresses primarily the modeling
and adaptation of content, navigation and presentation; the integration of op-
erational features and the generation of corresponding user interfaces are not
covered by UWE.

The XML-based Web Modeling Language (WebML) [4] supports the inte-
gration of operational features via Web Services in modeling and application
generation [11], but it is not discussed in detail how user interfaces for these
features are generated. Further, possibilities for the consideration of context in
WebML have been proposed [3], but not in conjunction with the modeling and
generation of user interfaces for operational features.

The model-driven generation of user interfaces is also a major research topic
in the Human-Computer Interaction (HCI) community. The development of so-
called Multiple or Plastic User Interfaces gains growing interest in the last couple
of years (for an overview see e.g. [13]). The focus is on the transformation from
abstract platform independent descriptions to concrete user interfaces for various
platforms. However, further contextual influences on the different levels of the
generation process are rarely addressed in these approaches.

Generally speaking, existing user interface engineering approaches do not
consider contextual influences in their modeling and application generation pro-
cesses to a full degree. They typically consider either information about user pref-
erences or about the location (see [8] for a survey) or address the model-driven
generation of multiple-platform user interfaces. Web Engineering approaches
that address adaptivity are primarily concerned with issues of how the appli-
cation’s navigation or contents can be adapted. The generation of adaptive,
context-aware Web user interfaces for the interaction with operational features
is not covered by existing approaches.

3

3 Ontology-Based Web Application and Context
Modeling

Our approach is rooted within the WISE research project [14], where ontologies
are used for conceptual Web application modeling. Ontology-based software en-
gineering allows for advanced semantic expressive power in modeling and model
exchange compared to other modeling techniques (cp. [5]). Especially for the
interoperable integration of contextual knowledge, ontology-based modeling ap-
pears promising. The model base of our approach is a repository consisting of
the following models (see also Figure 1):

– A domain ontology, defining concepts, instances, and relations of the appli-
cation’s domain as well as referencing resources used by the application.

– Several context ontologies, defining concepts, instances, and relations of the
context of use which are relevant for adaptive system behavior.

– A context relations model, defining contextual influences, e.g. by means of
weighted relations between entries of the domain ontology and entries of the
context ontologies.

– A navigation, a view, and a presentation model, each containing adaptation
specifications that define rules for adaptive system behavior based on the
ontology entries and the defined context relations.

Fig. 1. Application and context modeling in the WISE methodology

4 The CATWALK Framework

Catwalk [6] is a component-oriented framework that interprets the models at
run-time to generate an adaptive, context-aware Web application. It is based
on Apache Cocoon; Figure 2 gives an architectural overview. The components
of Catwalk can be assigned to one of two categories. The first category con-
sists of components that provide core functionality for context-awareness and

4

reasoning. The second category consists of components that are responsible for
adaptive Web application generation. White arrows indicate the process flow:
each client request is matched in the Cocoon pipeline and processed through a
series of components responsible for application generation, ultimately resulting
in a response to the client (e.g. a Web page). Arrows with dotted lines indicate
calls between components. Each component implements a specific concern, in the
sense of the separation of concerns architectural design principle. A component is
implemented by one or more Java classes and may use additional artefacts (such
as XSLT stylesheets for XML transformation). The model repository is accessed
via a Cocoon pseudo-protocol in each generation step and the corresponding
model parts are interpreted at run-time. A central component (the Adaptation
Engine) coordinates adaptive system behavior by interpreting context relations
and adaptation specifications and considering the respective contextual state
(provided by the Context Manager component).

Fig. 2. Component architecture of the Catwalk framework

5 Generation of Adaptive, Context-Aware User
Interfaces

Contextual knowledge affects different levels of the user interface generation
process. The following questions can be addressed: In what situations should a
user interface (or a part of it) be generated (selection)? Which values can be
preselected (parameterization)? What should the user interface look like (pre-
sentation)?

With these questions in mind, we now take a closer look at our approach
to incorporate contextual knowledge in the different steps of the user interface

5

generation process. This is accompanied by an example scenario for better illus-
tration: a Web portal for automobile services that provides a car rental function-
ality. Beforehand, we shortly address the representation of operational features
in our approach.

5.1 Representation

Catwalk follows a service-oriented approach – operational features that are
offered by the Web application are encapsulated in Web Services. Represent-
ing operational features is therefore primarily a Web Service composition and
coordination problem. Two dimensions can be distinguished: one, defining how
to combine discrete Web Services to more complex functionalities, and another,
defining the order in which Web Services are executed. The main challenge is the
definition of mappings and transformations between the different Web Services’
input and output values and the consideration of preconditions and effects. The
required modeling effort depends on the degree of semantic description that is
provided by the Web Services’ interfaces. The aim of the Semantic Web Services
approach is to provide best possible semantic descriptions of Web Services to
support the (partial) automation of Web Service discovery, composition, execu-
tion, and interoperation (see e.g. OWL-S [12]). If solely syntactic descriptions
of Web Services are given (such as is the case for WSDL), knowledge about the
capabilities of the involved Web Services must be part of the application models.

Context-aware Web Service composition and coordination models are not in
the focus of this paper and shall not be further discussed here (for details, see
e.g. [2]). For the remainder of this paper, we make the following generalized
assumption: Each operational feature is implemented by n Web Services (n = 1
is possible). These Web Services are referenced in the domain ontology together
with necessary information about their structure and interrelations.

Consider for example a car rental feature consisting of four parts, which are
realized by three Web Services – the first implements the selection of the desired
vehicle type(1) and the car model and equipment details(2), the second the
booking(3) and the third the payment(4). An ontology entry is created for each
part of the operational feature referencing the corresponding WSDL description.
The user shall interact with these Web Services in sequence – the ontology entries
are interconnected by appropriate relations and assigned to a master concept
that represents the whole feature. Additionally, parameters of the Web Services
are mapped (see section 5.3).

Alternatively, to briefly mention automation and extension possibilities for
Semantic Web Service scenarios, solely a formal semantic description of the de-
sired operational feature would be defined instead of explicit references to Web
Services. Then, the challenge is the automated discovery and composition of
Web Services that realize the desired operational feature.

6

5.2 Selection

The first step in the user interface generation process consists in the dynamic se-
lection of those operational features for which user interfaces should be presented
in the current Web page.

The navigation model defines the navigational structure of the Web applica-
tion by means of relations between entries of the domain ontology. The naviga-
tional structure is mapped onto the user’s current navigational position to iden-
tify application items, including operational features, that should potentially be
offered in the current Web page. Furthermore, context relations between oper-
ational features and concepts of the context ontologies are defined. Adaptation
specifications in the navigation model determine the current relevance of opera-
tional features in dependence of the context relations and the degree of activation
of context concepts (cp. [6]). According to these specifications and the relations
defined in the context relations model, none, one or several appropriate oper-
ational features are selected for which user interfaces have to be presented in
the current Web page. This selection mechanism is independent of the exact
representation of the operational features in the domain ontology. It is merely
concerned with the selection of operational features that fit into the contextual
situation and the user’s navigational position.

Let us consider the car rental example scenario and suppose that the user
has accessed the homepage of the Web portal for automobile services. A relation
between the ontology entry of the homepage and the ontology entry of the reser-
vation feature has been defined in the navigation model. Furthermore, a context
relation has been modeled between the reservation feature and the ’owns car’
concept of the user context ontology; this concept is activated if the user owns
a car. At last, an adaptation specification has been defined, stating that a user
interface for the reservation feature should be presented if the related context
concept (’owns car’) is deactivated. As a result of this modeling, the reservation
feature will be presented directly on the homepage to users who do not own a car
whereas car owners reach it only via navigation. The context-dependent selection
of user interfaces should be considered as supporting rather than withholding.
Clearly, all essential functionality should always be alternatively accessible by
the user (e.g. via navigation).

5.3 Parameterization

In the next step, the user interface is pre-parameterized according to the con-
textual situation to provide initial support for user interaction. To achieve this,
context relations are defined between parameter entries of the operational fea-
tures and concepts of the context ontologies. The arrows linking the two windows
in Figure 3 illustrate these relations. The activated concepts of the context on-
tologies (window on the right hand side) determine the parameter value selection
in the Web page (window on the left hand side). In the example given, the pa-
rameter ’Model’ is mapped with the user’s favorite car model. Likewise, the

7

parameter ’Color’ with the user’s favorite car color. The parameter ’Convert-
ible’ is mapped with the season and the ’Pick-up’ point with the user’s current
location. If a mapped context concept is activated, the corresponding value is
handled as the default value and is preselected in the user interface. The way
a value is preselected depends on the type of user interface element, which is
determined in the subsequent generation step in accordance to the contextual
conditions.

Again, automation possibilities depend on the degree of semantic description
and shared understanding of the concepts. The automatic retrieval of context
concepts that match the required parameter values (e.g. the favorite car model)
is conceivable in a semantically rich scenario. Ultimately, if for every parameter
value a matching context concept is found or modeled, no user interaction at
all is required. However, user interaction (and control) might be necessary and
useful in many cases.

Generally, the danger of erroneous mapping or incorrectly retrieved context
exists that confuses instead of support the user. Suppose another city than Duis-
burg would be preselected as pick-up location in the example scenario that is
further away from the user’s current location. Then, the user would possibly
assume that there exists no pick-up location in Duisburg and would accept the
preselection without verifying his (false) assumption.

Fig. 3. Contextually adapted user interface of a car rental feature.

8

5.4 Presentation

In the last step, the user interface elements’ look and feel is built. Alternative
presentation forms come into question, depending on the situational relevance
of an operational feature and the contextual conditions. Catwalk is designed
to support the definition of various UI patterns for this purpose. Each pattern
consists of an XSLT-template (and optionally an additional CSS-stylesheet) and
is referenced in the domain ontology. Similar to the modeling of the navigational
structure, relations between pattern entries and entries of operational features
are defined – this time in the presentation model. These relations determine
for each operational feature or a set of features which patterns are suitable.
Furthermore, relations between pattern entries and concepts of the context on-
tologies are modeled in the context relations model. Adaptation specifications
define which pattern should be selected for an operational feature in accordance
to the context relations and activated concepts.

The left window in Figure 3 shows a possible implementation of a user in-
terface for a part of the car rental example scenario. Suppose the user chose the
vehicle type in the first step and now has to select the desired car model, some
equipment details, as well as dates, times, pick-up, and return locations. The
user accesses the Web portal via a desktop PC in the example scenario – the
corresponding concept of the device context ontology is activated. Due to the
modeled context relations and the adaptation specifications of the presentation
model, a pattern is selected that is suitable for desktop PCs. Alternative patterns
and respective context relations and adaptation specifications can be defined for
other client devices such as PDAs or cellular phones. Varying patterns can also
be used in dependence of a feature’s relevance or for different user types (e.g.
for visually handicapped people, a CSS-stylesheet defining larger GUI-elements
might be selected).

Information required for the generation of suitable user interface elements
is either stored in the domain ontology or have to be retrieved from the Web
Service. Two ways of retrieval have to be distinguished: using the Web Service’s
WSDL description, in particular the XML Schema definitions, or using Web Ser-
vice calls. The first allows the creation of a suitable (X)HTML form element for
every XML Schema element by the pattern’s XSLT-stylesheet, depending on the
type of Schema element and (possibly) the number of provided value options. In
the example scenario, the Web Service’s WSDL description defines the complex
type ’Model’ that includes a list of car models that are all permitted parame-
ter values. The XSLT-stylesheet transforms these values in an HTML dropdown
listbox. Likewise, it transforms the complex type ’Color’ that defines a list of car
colors. The Boolean type ’Convertible’ is transformed in an HTML checkbox.
Corresponding data types are assigned to the parameters ’Date’ and ’Time’ in
the WSDL description - common date and time picker elements are created.
Again, semantically richer Web Service descriptions and a shared understanding
of interface parameters would help to enhance the transformation of interface
parameters to HTML form elements.

9

In the simplest way, the Web Service is invoked after submission of the whole
HTML-form for the first time. Then, the selected values and their interdepen-
dencies are validated by the Web Service and possibly a message informing
about conflicting values is send back. In such a case, the user might have to
select different parameter values again and again until all value conflicts are re-
solved (e.g., the desired car might not be available for a specific location, date,
and time). A more comfortable way is to trigger Web Service calls after certain
user interactions to update the list of parameter values that can be selected by
the user taking interdependencies into account. Ajax-based techniques are ap-
propriate for such an implementation. Ultimately, the Web Services determine
how sophisticated the user interface can be by providing or not providing such
functionality. In the simplest case, the XML Schema element name is used for
caption and text boxes are created allowing the input of parameter values (with
preselected recommendations, see section 5.3).

6 Conclusion and Future Work

The homogenous integration of user interfaces for interaction with operational
features is an emerging issue in the course of the evolution of Web applications
from simple information systems to complex interactive applications. In the pre-
sented service-oriented approach, contextual influences have been considered in
the modeling process right from the start for different parts of the generation pro-
cess: selection, parameterization, and presentation. The approach builds upon
an ontology-based modeling method and upon the Catwalk framework that
provides run-time generation of adaptive, context-aware Web applications from
these models.

We have shown how the incorporation of contextual knowledge can support
user interaction and may lead to better usability that could make the additional
modeling effort worthwhile in certain cases. We have also discussed some au-
tomation possibilities, especially in conjunction with Semantic Web Services.
Likewise, it has become apparent that incorrect adaptation can confuse the user
and reduce interaction quality. Thus, automation possibilities are restricted to
some degree and careful modeling is demanded. The empirical investigation of
adaptation effects is a difficult task; however, heuristic methods should provide
a good basis for design decisions in many cases.

The presented approach is independent of specific context sensing mecha-
nisms. However, possibilities for the exchange and the evaluation of externally
sensed context information would be useful extensions. Other topics for future
work include the definition of various context-specific UI patterns as well as a
better support for the modeling of interaction processes. The empirical investi-
gation of different adaptation strategies and their effects on usability issues are
further topics of interest.

10

Acknowledgements

This work was partially supported by the German Federal Ministry of Education
and Research (BMBF) under grant no. 01ISC30F.

References

1. Baresi, L., Garzotto, L., Paolini, P.: From Web Sites to Web Applications: New
Issues for Conceptual Modeling. In Proceedings of the Workshops on Concep-
tual Modeling Approaches for E-Business and The World Wide Web and Concep-
tual Modeling: Conceptual Modeling for E-Business and the Web, London, UK.
Springer LNCS 1921 (2000) 89–100

2. Ben Mokhtar, S., Fournier, D., Georgantas, N., Issarny, V.: Context-aware Service
Composition in Pervasive Computing Environments. In Proceedings of the 2nd
International Workshop on Rapid Integration of Software Engineering techniques
(RISE’05), Heraklion Crete, Greece. Springer LNCS 3943 (2006) 129–144

3. Ceri, S., Daniel, F., Matera, M., Facca, F.: Model-driven Development of Context-
Aware Web Applications. ACM Trans. Inter. Tech. (TOIT) 7(2) (2007), to appear

4. Ceri, S. et al.: Designing Data-Intensive Web Applications. Morgan Kaufmann
(2002).

5. Hesse, W.: Ontologies in the Software Engineering Process. In Proceedings of the
2nd Workshop on Enterprise Application Integration (EAI’05), Marburg, Germany.
CEUR 141 (2005)

6. Kaltz, J.W.: An Engineering Method for Adaptive, Context-aware Web Applica-
tions. PhD thesis, University of Duisburg-Essen. Utz (2006). Also published online
at http://purl.oclc.org/NET/duett-07202006-093134

7. Kaltz, J.W., Ziegler, J., and Lohmann, S.: Context-Aware Web Engineering: Mod-
eling and Applications. RIA - Revue d’Intelligence Artificielle, Special Issue on
Applying Context Management 19(3) (2005) 439–458

8. Kappel, G., Pröll, B., Retschitzegger, W., and Schwinger, W.: Customisation for
Ubiquitous Web Applications - A Comparison of Approaches. Int. J. Web Eng.
and Technol. (IJWET) 1(1) (2003) 79–111

9. Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference
Model, Modeling Techniques and Development Process. PhD thesis, Ludwig-
Maximilians-University Munich (2001)

10. Kraus, A., Koch, N.: Generation of Web Applications from UML Models using
an XML Publishing Framework. In Proceedings of the 6th World Conference on
Integrated Design and Process Technology (IDPT’02), Pasadena, USA (2002)

11. Manolescu, I. et al.: Model-Driven Design and Deployment of Service-Enabled Web
Applications. ACM Trans. Inter. Tech. 5(3) (2005) 439–479.

12. Martin, D. et al.: Bringing Semantics to Web Services: The OWL-S Approach.
In Proceedings of the 1st International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC’04), San Diego, USA. Springer LNCS 3387
(2003) 26–42.

13. Seffah, A., Javahery, H.: Multiple User Interfaces: Crossplatform Applications and
Context-Aware Interfaces. J.Wiley (2003)

14. WISE - Web Information and Service Engineering
http://www.wise-projekt.de (2006/Oct/28)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

