Co-Staying: a Social Network for Increasing the Trustworthiness of Hotel Recommendations

Barbu, C.-M., & Ziegler, J. (2017). In J. Neidhardt, D. Fesenmaier, T. Kuflik, & W. Wörndl (Eds.), RecTour 2017: 2nd Workshop on Recommenders in Tourism : Proceedings of the 2nd Workshop on Recommenders in Tourism co-located with 11th ACM Conference on Recommender Systems (RecSys 2017) Como, Italy, August 27, 2017 (Vol. 1906, pp. 35–39).

Abstract

Recommender systems attempt to match users’ preferences with items. To achieve this, they typically store and process a large amount of user profiles, item attributes, as well as an ever-increasing volume of user-generated feedback about those items. By mining user-generated data, such as reviews, a complex network consisting of users, items, and item properties can be created. Exploiting this network could allow a recommender system to identify, with greater accuracy, items that users are likely to find attractive based on the attributes mentioned in their past reviews as well as in those left by similar users. At the same time, allowing users to visualize and explore the network could lead to novel ways of interacting with recommender systems and might play a role in increasing the trustworthiness of recommendations. We report on a conceptual model for a multimode network for hotel recommendations and discuss potential interactive mechanisms that might be employed for visualizing it.

Resources

Related publications

Users’ Choices About Hotel Booking: Cues for Personalizing the Presentation of Recommendations

Barbu, C.-M., & Ziegler, J. (2017). In T. Domonkos & P. Pu (Eds.), Poster Proceeding of ACM Recsys 2017: Proceedings of the Poster Track of the 11th ACM Conference on Recommender Systems (RecSys 2017) Como, Italy, August 28, 2017 (Vol. 1905, pp. 44–45).

User Model Dimensions for Personalizing the Presentation of Recommendations

Barbu, C.-M., & Ziegler, J. (2017). In P. Brusilovsky, M. de Gemmis, A. Felfernig, P. Lops, J. O’Donovan, N. Tintarev, & C. M. Willemsen (Eds.), IntRS 2017: Interfaces and Human Decision Making for Recommender Systems : Proceedings of the 4th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems co-located with ACM Conference on Recommender Systems (RecSys 2017) (Vol. 1884, pp. 20–23).

Trust-Related Effects of Expertise and Similarity Cues in Human-Generated Recommendations

Kunkel, J., Donkers, T., Barbu, C.-M., & Ziegler, J. (2018). In 2nd Workshop on Theory-Informed User Modeling for Tailoring and Personalizing Interfaces (HUMANIZE), 11 March 2018, Tokyo, Japan.

VIEW MORE »